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Is CO a reliable tracer in diffuse regions?

• CO has varying abundance w.r.t. H2 in diffuse clouds (Liszt and Pety,

2012)

• Molecular gas (H2) exists without associated CO (Blitz et. al 1990)

∴ CO is NOT a reliable tracer

⇒ Need for new tracers

Interstellar Hydrides like CH, OH
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Why hydrides?

• First molecules discovered in the

ISM (Dunham et al. 1937)

• Reservoir of heavy elements

(Godard et. al 2014)

• Initial products of chemical

networks

⇒ Building blocks of interstellar

chemistry
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Transitions

Fundamental rotational transitions lie in the sub-mm regime
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Observations

German REciever for Astronomy at Terahertz frequencies
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Hydrides as diagnostics for H2

Absorption line spectroscopy → robust means of determining column densities
( independent of gas temperature, density, collisional excitation rates, etc)
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Why use CH?

• Ubiquitous

• Tight correlation with H2,

[CH]/[H2] = 3.5×10−8

(Sheffer et al. 2008)

• Unsaturated ground state

absorption
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Deriving column densities

Fit the spectra

Multi-Gaussian fitting

• Superposition of Gaussian

profiles to describe complex

features

• Uses a large number of

parameters

• Lacks uniqueness

Deconvolution

• Decomposes the observed

spectrum

• Division in Fourier space,

F(ν) = G(ν)
H(ν)

Original Spectrum

F(ν)

⊗ Observed Spectrum

G(ν)

Hyperfine Weights

H(ν)
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Wiener filter deconvolution

Original Spectrum

F(ν)

× Observed Spectrum

G(ν)

Hyperfine Weights

H(ν)

+ Degraded Spectrum

D(ν)

Additive Noise

F (ν) =
D(ν)

H(ν)

|H(ν)|2
|H(ν)|2 + | 1

SNR |2︸ ︷︷ ︸
Wiener Filter

Optimized by minimizing the mean square error between the original

spectrum and its Wiener filter approximation (Jacob et al. in prep)
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Wiener filter results
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Similarly for OH
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Canconical N(OH)/N(H2) relation?
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• Pearson’s r-value = 0.68

• N(OH)/N(CH) = 4.7

• N(OH)/N(H2) = 1.6× 10−7

• Pearson’s r-value = 0.68

• N(OH)/N(CH) = 2.0

• N(OH)/N(H2) = 0.7× 10−7
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CH radio lines

Effelsberg 100-m Telescope

© http://www.fotocommunity.de/photo/radioteleskop-effelsberg-jochen-
moll/26052332
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CH radio lines

Lower 
Satellite 

Line
0 → 1

Lower 
Satellite 

Line
0 → 1

Main 
Satellite 

Line
1 → 1

Upper 
Satellite 

Line
1 → 0

• At LTE, I(3264) : I(3335) : I(3349)

= 1 : 2 : 1

• Deviations from LTE ⇒
interactions with radiation

• Requires non-LTE radiative

transfer modelling

• N(CH) from FIR transitions

used as input
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Constraining the physical conditions

• MOLPOP-CEP (Coupled Escape Probabilty)

• Collisional rate coefficients from Dagdigian et al, 2018
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https://github.com/aasensio/molpop-cep/blob/master/manual_molpopcep.pdf


RADEX models

(Dagdigian et al, 2018)

Model

• Expanding Sphere, Tkin = 100 K, o/p =

1.63

Results

• Tex < TCMB up to n(H2) ∼ 107cm−3

• Tex rapidly increases at n(H)

∼ 2× 107cm−3

• Tb, model ; Tb, obs
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Conclusion

• The Wiener filter deconvolution provides a fast and non-iterative

scheme to compute column densities of spectra plagued by hyperfine

structure.

• N(OH)/N(H2) relation ... ?

• Line inversion is not reproduced by the models ⇒ physical

conditions cannot be constrained.

• The simple RT calculations are not sufficient to explain the observed

anomalous excitations (currently carrying out RATRAN modelling).

Thank you
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Backup slides

2 THz Transitions

Table 1: 2 THz doublet transitons. (∗) indicates the transitions that were observed. The

frequencies, Einstein coefficients and upper level energies are taken from the CDMS Mueller et. al,

2001 database.

Species Transition Hyperfine Frequency AE EU

Components [GHz] [s−1] [K]

CH N = 2← 1 , ∗F = 1− ← 1+ 2006.74892 0.01117 96.31011

J = 3/2← 1/2 ∗F = 1− ← 0+ 2006.76263 0.02234 96.31005
∗F = 2− ← 1+ 2006.79912 0.03350 96.31252

F = 1+ ← 1− 2010.73859 0.01128 96.66158

F = 1+ ← 0− 2010.81046 0.02257 96.66157

F = 2+ ← 1− 2010.81192 0.03385 96.66510
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Backup slides

3 GHz Transitions

Table 2: 3 GHz Λ-doubling transitions were observed. The frequencies, Einstein coefficients and

upper level energies are taken from the CDMS Mueller et. al 2001 database.

Species Transition Hyperfine Frequency AE EU

Components [MHz] [×10−10s−1] [K]

CH N = 1 F = 0− ← 1+ 3263.79340 2.88 0.15736

J = 1/2 F = 1− ← 1+ 3335.47940 2.05 0.16080

F = 1− ← 0+ 3349.19260 1.04 0.16074
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Backup slides

Tex = TCMB

Figure 1: Schematic sketch of the energy density of the interstellar radiation

field at different frequencies. (Tielens)
CH as a tracer for H2: forming synergies Arshia Jacob (MPIfR) 11.07.2018 22



Backup slides

20 0 20 40 60 80 100

VLSR [kms−1 ]

0.0

0.5

1.0

1.5

T
m

b
[K

]

0.0

0.5

1.0

1.5

τ ν

W49 N

CH as a tracer for H2: forming synergies Arshia Jacob (MPIfR) 11.07.2018 23



Backup slides

Critical Densities

Table 3: Critical densities of the CH 2 THz transitions at Tkin = 50 K.

Collision Partner ncrit [cm−3]

2006.74 THz 2006.76 THz 2006.79 THz

H2 5.00×107 9.95×107 1.45×108

H 8.88×107 1.76×108 2.48×108

Table 4: Critical densities of the CH 3 GHz transitions at Tkin = 50 K.

Collision Partner ncrit [cm−3]

3.264 GHz 3.349 GHz 3.335 GHz

H2 1.77 0.63 1.24

H 32.28 8.90 17.53
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Backup slides

Negative Excitation Temperatures
nu
nl

= gu
gl
exp(−∆E

kBTex
)

If the upper level is overpopulated for some reason,
nu
nl
> gu

gl

Then Tex is negative

• Since, τ ∝ [1− exp(−∆E
kBTex

)] the optical depth is also negative.

• At radio wavelengths this is called maser (microwave amplification

by stimulated emission of radiation) amplification.

• Astrophysical masers are common at radio frequencies because

∆E � kBTex.
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Backup slides

Error Analysis
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Figure 2: Displays the importance, uncertainity measures in the continuum

play in derived results such as the opacity. The curves represent δTc at 0, 5,

25, 50 and 75 % of the measured continuum level Tc.
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