CH as a tracer for molecular hydrogen: Forming synergies between its far-infrared and radio fingerprints

Arshia Maria Jacob

Max-Planck Institut für Radioastronomie (MPIfR)

Prof. Dr. Karl M. Menten (MPIfR) Dr. Helmut Wiesemeyer (MPIfR)

11 July 2018 The Cosmic Cycle of Dust and Gas in the Galaxy: From Old to Young Stars

Max-Planck-Institut für Radioastronomie

Most abundant molecule H₂ Key role in the chemistry of star forming regions

© Feynes Lorand

Most abundant molecule H₂ Key role in the chemistry of star forming regions

INVISIBLE

Most abundant molecule H₂ Key role in the chemistry of star forming regions

© Feynes Lorand

Most abundant molecule H₂ Key role in the chemistry of star forming regions

Most abundant molecule H₂ Key role in the chemistry of star forming regions

How reliable is CO as a tracer for H₂?

- CO has varying abundance w.r.t. H_2 in diffuse clouds (Liszt and Pety, 2012)
- Molecular gas (H_2) exists without associated CO $_{\rm (Blitz\ et.\ al\ 1990)}$

 \therefore CO is NOT a reliable tracer

- CO has varying abundance w.r.t. H_2 in diffuse clouds (Liszt and Pety, 2012)
- Molecular gas (H_2) exists without associated CO $_{\rm (Blitz\ et.\ al\ 1990)}$

 \therefore CO is NOT a reliable tracer

 \Rightarrow Need for new tracers

- CO has varying abundance w.r.t. H_2 in diffuse clouds (Liszt and Pety, 2012)
- Molecular gas (H_2) exists without associated CO (Blitz et. al 1990)

\therefore CO is NOT a reliable tracer

 \Rightarrow Need for new tracers

Interstellar Hydrides like CH, OH

- First molecules discovered in the ISM (Dunham et al. 1937)
- Reservoir of heavy elements

Why hydrides?

- First molecules discovered in the ISM (Dunham et al. 1937)
- Reservoir of heavy elements

- Initial products of chemical networks
 - \Rightarrow Building blocks of interstellar chemistry

Transitions

CH as a tracer for H₂: forming synergies

Observations

German REciever for Astronomy at Terahertz frequencies

Absorption line spectroscopy \rightarrow robust means of determining column densities (independent of gas temperature, density, collisional excitation rates, etc)

Why use CH?

- Ubiquitous
- Tight correlation with H₂, $\label{eq:chi} [CH]/[H_2] = 3.5 {\times} 10^{-8}$

• Unsaturated ground state absorption

Saturated OH absorption

Why use CH?

- Ubiquitous
- Tight correlation with H₂, $\label{eq:chi} [CH]/[H_2] = 3.5 {\times} 10^{-8}$

(Sheffer et al. 2008)

• Unsaturated ground state absorption

Saturated OH absorption

 \rightarrow Derive column densities

Fit the spectra

Fit the spectra

Multi-Gaussian fitting

- Superposition of Gaussian profiles to describe complex features
- Uses a large number of parameters
- Lacks uniqueness

Fit the spectra

Multi-Gaussian fitting

- Superposition of Gaussian profiles to describe complex features
- Uses a large number of parameters
- Lacks uniqueness

Deconvolution

- Decomposes the observed spectrum
- Division in Fourier space, $F(\nu) = \frac{G(\nu)}{H(\nu)}$

Wiener filter deconvolution

Optimized by minimizing the mean square error between the original spectrum and its Wiener filter approximation (Jacob et al. in prep)

CH as a tracer for H₂: forming synergies

Wiener filter results

Similarly for OH

Canconical $N(OH)/N(H_2)$ relation?

- Pearson's r-value = 0.68
- N(OH)/N(CH) = 4.7
- $N(OH)/N(H_2) = 1.6 \times 10^{-7}$

- Pearson's r-value = 0.68
- N(OH)/N(CH) = 2.0
- $N(OH)/N(H_2) = 0.7 \times 10^{-7}$

Synergy?

Synergy?

Synergy?

CH radio lines

- At LTE, $I_{(3264)}$: $I_{(3335)}$: $I_{(3349)}$ = 1 : 2 : 1
- Deviations from LTE ⇒ interactions with radiation

16

CH radio lines

- At LTE, *I*₍₃₂₆₄₎ : *I*₍₃₃₃₅₎ : *I*₍₃₃₄₉₎ = 1 : 2 : 1
- Deviations from LTE ⇒ interactions with radiation
- Requires non-LTE radiative transfer modelling
- *N*(CH) from FIR transitions used as input

Constraining the physical conditions

- MOLPOP-CEP (Coupled Escape Probability)
- Collisional rate coefficients from Dagdigian et al, 2018

CH as a tracer for H₂: forming synergies

Arshia Jacob (MPIfR)

11.07.2018

17

RADEX models

(Dagdigian et al, 2018)

Model

• Expanding Sphere, $T_{kin} = 100$ K, o/p = 1.63

Results

- $T_{\rm ex} < T_{\rm CMB}$ up to $n({
 m H_2}) \sim 10^7 {
 m cm^{-3}}$
- $T_{\rm ex}$ rapidly increases at $n({\rm H})$ ~ $2 \times 10^7 {\rm cm}^{-3}$
- $T_{b, model} \Rightarrow T_{b, obs}$

Conclusion

- The Wiener filter deconvolution provides a fast and non-iterative scheme to compute column densities of spectra plagued by hyperfine structure.
- *N*(OH)/*N*(H₂) relation ... ?
- Line inversion is not reproduced by the models ⇒ physical conditions cannot be constrained.
 - The simple RT calculations are not sufficient to explain the observed anomalous excitations (currently carrying out RATRAN modelling).

Conclusion

- The Wiener filter deconvolution provides a fast and non-iterative scheme to compute column densities of spectra plagued by hyperfine structure.
- *N*(OH)/*N*(H₂) relation ... ?
- Line inversion is not reproduced by the models ⇒ physical conditions cannot be constrained.

The simple RT calculations are not sufficient to explain the observed anomalous excitations (currently carrying out RATRAN modelling).

Thank you

Carlo

2 THz Transitions

 Table 1: 2 THz doublet transitons. (*) indicates the transitions that were observed. The frequencies, Einstein coefficients and upper level energies are taken from the CDMS Mueller et. al, 2001 database.

Species	Transition	Hyperfine Components	Frequency [GHz]	A _E [s ⁻¹]	Е _U [K]
СН	$N=2 \leftarrow 1$, $J=3/2 \leftarrow 1/2$	$\label{eq:F} \begin{array}{l} {}^*F = 1^- \leftarrow 1^+ \\ {}^*F = 1^- \leftarrow 0^+ \\ {}^*F = 2^- \leftarrow 1^+ \end{array}$	2006.74892 2006.76263 2006.79912	0.01117 0.02234 0.03350	96.31011 96.31005 96.31252
		$\begin{array}{l} F = 1^+ \leftarrow 1^- \\ F = 1^+ \leftarrow 0^- \\ F = 2^+ \leftarrow 1^- \end{array}$	2010.73859 2010.81046 2010.81192	0.01128 0.02257 0.03385	96.66158 96.66157 96.66510

3 GHz Transitions

Table 2: 3 GHz A-doubling transitions were observed. The frequencies, Einstein coefficients and upper level energies are taken from the CDMS Mueller et. al 2001 database.

Species	Transition	Hyperfine Components	Frequency [MHz]	A_{E} [×10 ⁻¹⁰ s ⁻¹]	Е _U [K]
СН	$\begin{array}{l} N=1\\ J=1/2 \end{array}$	$\begin{split} F &= 0^- \leftarrow 1^+ \\ F &= 1^- \leftarrow 1^+ \\ F &= 1^- \leftarrow 0^+ \end{split}$	3263.79340 3335.47940 3349.19260	2.88 2.05 1.04	0.15736 0.16080 0.16074

Backup slides

 $T_e x = T_{CMB}$

Figure 1: Schematic sketch of the energy density of the interstellar radiation field at different frequencies. (Tielens)

CH as a tracer for $\mathsf{H}_2\colon$ forming synergies

Arshia Jacob (MPIfR)

11.07.2018

Critical Densities

Table 3: Critical densities of the CH 2 THz transitions at $T_{kin} = 50$ K.

Collision Partner	2006.74 THz	n _{crit} [cm ⁻³] 2006.76 THz	2006.79 THz
H ₂	5.00×10^{7}	9.95×10^{7}	$\substack{1.45 \times 10^8 \\ 2.48 \times 10^8}$
H	8.88×10^{7}	1.76×10^{8}	

Table 4: Critical densities of the CH 3 GHz transitions at $T_{kin} = 50$ K.

Collision Partner	3.264 GHz	n _{crit} [cm ⁻³] 3.349 GHz	3.335 GHz
H ₂	1.77	0.63	1.24
H	32.28	8.90	17.53

Negative Excitation Temperatures

 $\begin{array}{l} \frac{n_u}{n_l} = \frac{g_u}{g_l} \exp(\frac{-\Delta E}{k_{\rm B} T_{\rm ex}}) \\ \text{If the upper level is overpopulated for some reason,} \\ \frac{n_u}{n_l} > \frac{g_u}{g_l} \\ \text{Then } T_{\rm ex} \text{ is negative} \end{array}$

- Since, $\tau \propto [1 \exp(\frac{-\Delta E}{k_{\rm B} T_{\rm ex}})]$ the optical depth is also negative.
- At radio wavelengths this is called maser (microwave amplification by stimulated emission of radiation) amplification.
- Astrophysical masers are common at radio frequencies because $\Delta E \ll k_{\rm B} \, T_{\rm ex}.$

Backup slides

Error Analysis

Figure 2: Displays the importance, uncertainity measures in the continuum play in derived results such as the opacity. The curves represent δT_c at 0, 5, 25, 50 and 75 % of the measured continuum level T_c .

Arshia Jacob (MPIfR)