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Interstellar shocks configuration

- Bow shock (forward shock): 
formed in the ambient materials.

- Termination shock (reverse shock): 
formed in the stellar wind/Jet materials.
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- Bow shock (forward shock): 
formed in the ambient materials.

- Termination shock (reverse shock): 
formed in the stellar wind/Jet materials.

Bow shock (forward shock)
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Stationary shock waves: J-shock and C-shock

J-shock

➢C-shock

(v s>vims)

(v s<vims)

V. ConclusionsI. Introduction II. 1D shock model III. 3D bow shock model IV. SNR IC443

C-shock and J-shock
n

H
 = 104 cm-3, v

s
=15 km s-1 

B=0.01 mG (J-shock), B=0.1 mG (C-shock) 

C-shock

J-shock

● Absent/weak magnetic field
● Large Ionization fraction

● Strong magnetic field
● Small ionization fraction

vims=√v iA
2
+c s

2
∼ v iA=

B

√4πρi

➢Magnetosonic speed in charged fluid
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Young shock waves: CJ-shock

C-shock

J-shock

CJ-shock
n

H
 = 104 cm-3, v

s
=15 km s-1, age = 102 yr 

(Chièze et al., 1998;  Lesaffre et al., 2004)

J-shock, C-shock and CJ-shock
n

H
 = 104 cm-3, v

s
=15 km s-1, age = 102 yr 

C-shock

J-shock

CJ-shock
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Energy transfer through a shock
J-shock

n
H
 = 105 cm-3, v

s
=15 km s-1, B = 0 

(Flower et al., 2003)

During the shock
➢ Kinetic energy goes to thermal energy 
➢ Thermal energy excites the molecular gas
➢ Molecular gas radiates through de-excitation    

H
2
 is one of the best shock tracers
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1D shock models to interpret observations

One single planar shock model cannot reproduce observations
➢ good at “low” excitation energy (KN96)
➢ good at “high” excitation energy (B88)  

Rosenthal et al., 2000

9

Orion molecular cloud OMC-Peak1
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3D shock model approximation
➢ Running 2D, 3D numerical MHD simulations: hard to do properly
➢ Give a bow shape, each surface element considered as an independent 1D shock model

z≃x β

First introduced by Smith et al.,1990
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Validation of 3D shock model approximation 
➢ Collection of steady-state C-shocks
➢ Non-equilibrium chemistry, ionization and cooling
➢ Bow shock shape:    

Gustafsson et al., 2010

(1D Paris-Durham code)

z≃xβ
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206 L. E. Kristensen et al.: Observational 2D model of H2 emission from a bow shock in the Orion molecular cloud

Table1. Characteristics of the 9 segments of the bow object described in the text and displayed in Fig. 2. Brightness is given in units of
10−5 W m−2 sr−1 and FWHM perpendicular to the bow surface in units of AU. The uncertainties σobs given are 1σ.

Segment Position Brightness (10−5 W m−2 sr−1) FWHM (AU)
angle v=1−0 S(1) v=1−0 S(0) v=2−1 S(1) v=1−0 S(1) v=1−0 S(0) v=2−1 S(1)

1 188◦ 0.86 ±0.03 0.32 ±0.02 0.18 ±0.01 130 ±30 100 ±60 80 ±70
2 202◦ 1.24 ±0.04 0.44 ±0.02 0.28 ±0.02 160 ±20 130 ±40 120 ±50
3 221◦ 1.55 ±0.05 0.50 ±0.02 0.32 ±0.02 190 ±15 170 ±20 140 ±40
4 243◦ 1.57 ±0.05 0.53 ±0.02 0.29 ±0.02 180 ±15 160 ±20 140 ±40
5 241◦ 1.42 ±0.05 0.45 ±0.02 0.26 ±0.01 210 ±15 160 ±20 180 ±30
6 247◦ 1.32 ±0.04 0.47 ±0.02 0.24 ±0.01 200 ±15 130 ±20 160 ±30
7 253◦ 1.05 ±0.04 0.41 ±0.02 0.21 ±0.02 200 ±20 120 ±40 160 ±40
8 259◦ 0.87 ±0.03 0.34 ±0.02 0.16 ±0.01 210 ±25 140 ±50 170 ±50
9 264◦ 0.70 ±0.03 0.28 ±0.02 0.11 ±0.01 230 ±30 110 ±60 150 ±60

Fig.2.Location and extent of the 9 segments we have chosen to study
overlaid on a map of continuum subtracted H2 v=1−0 S(1) emission.
Coordinates are relative to TCC0016 and the colorbar is given in units
of 10−5 W m−2 sr−1. The location of the shock is shown in Fig. 1. We
have labelled segments 1 and 9 for easy identification. The arrow shows
a position angle of 235◦ and the length corresponds to 150 AU.

candidates as the source of the outflow (Nissen et al. 2007, and
references therein). Given the uncertainty of our method (±10◦)
and the uncertainty in the angle determined by Nissen et al. (±5◦)
there is no significant disagreement. Based on the data given in
Cunningham we estimate that the 1σ uncertainty is of the order
of∼55◦. Thus our result for the position angle agrees with that of
Cunningham (2006). The position angles of the individual seg-
ments are listed in Table 1.

We now average the segments in the direction perpendicu-
lar to the bow to increase the S/N ratio. For each segment along
the bow we obtain a brightness profile perpendicular to the bow
(see Fig. 3). This is done for all of the three H2 rovibrational
lines. We measure the FWHM of the 3 brightness profiles ob-
served illustrated by the box lengths in Fig. 2. We then average
the brightness over the FWHM of the profile. FWHM is chosen
because it does not depend on the noise level. For the segments

analysed here, the FWHM is always measured well above the
noise level, which is also clear from Fig. 3.

For each segment we thus have 6 observational constraints:

– FWHM measurements of emission perpendicular to the bow
profile for each of the 3 lines.

– line brightness of the H2 lines v=1−0 S(1), v=1−0 S(0) and
v=2−1 S(1) averaged over the FWHM of the bow profile.

In Fig. 2 we display the location and extent of each segment and
in Table 1 we list the 6 observational constraints for the seg-
ments and we display them in Figs. 4 and 5. For the moment
we have chosen not to include the velocity as an observational
constraint for the following reason. We do not know how the
proper motion changes along the bow. Thus we only know the
peak or apex velocity. In order to use the velocity as a constraint
it would have been necessary to have detailed information of the
measured 3D velocities along the bow and to take the inclina-
tion of the shock into account. The model we construct here is a
2D model ignoring any effects of inclination with respect to the
plane of the sky.

As can be seen from VLT images in these observations and
those of Lacombe et al. (2004), the object is elongated along the
direction of motion (Cunningham 2006) near the centre. This can
be seen as a secondary brightness peak slightly upstream around
50 AU in segments 3−6 in Fig. 3. The separation between the
two centres of brightness is ∼55 AU (0.′ ′12) which is comparable
to our resolution. The position angle between the two is ∼206◦±
20◦. This is consistent with the position angle determined here as
well as the position angle determined in the proper motion stud-
ies by Cunningham (2006) and radial velocity measurements by
Nissen et al. (2007). This secondary brightness may be due to a
Mach disk. For the moment we choose to ignore this, but we will
return to it in Sect. 4.4.3.

4. Shockmodel

4.1. Model description
We use the plane parallel (1D) steady state, multi-fluid shock
model described in Flower & Pineau des Forêts (2003) and ref-
erences therein. Here we will describe the parts of the model
important for our analysis.

In the models the magnetohydrodynamic equations are in-
tegrated in parallel with chemical reaction rate equations in a
self-consistent manner. For each step of the model, abundances
of 136 species linked by 1040 reactions are calculated. The ini-
tial species abundances are given by Flower & Pineau des Forêts
(2003). In particular we mention here that the initial PAH-
abundance is set to nPAH/nH = 10−6. This has important

1-0 S(1)

Kristensen et al., 2008

1-0 S(0)

V. ConclusionsI. Introduction II. 1D shock model III. 3D bow shock model IV. SNR IC443

(Flower & Pineau des Forêts, 2015)
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3D shock model

parameters descriptions

u
0 Terminal shock velocity

n
H Number density

Magnetization 
parameter

Shock age Dynamical shock age

Ψ Bfield inclination

β Shock shape

i Viewing angle

b0=B(μG)/√nH (cm−3
)

➢ Collection of steady-state C-shocks, J-shocks and CJ-shocks
➢ Non-equilibrium chemistry, ionization and cooling
➢ Distribution of 1D shock models, arbitrary shape of shock 
➢ Integrated H

2
 excitation diagrams and H

2
 line profiles   

(1D Paris-Durham code)

b∥
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u⊥

Paris−Durham (u⊥ , b∥ ,...)
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(Flower & Pineau des Forêts, 2015)
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Grid of 1D planar Paris-Durham models

v
A

v
m1 

 =
 
18.5 kms-1 for n

H
 = 102 cm-3

v
m1 

 =
 
19.2 kms-1 for n

H
 = 104 cm-3

v
ims
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n
H
 = 102 cm-3, age = 100 yr
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Distribution of 1D shock model on working surface

➢ PDF is dominated by low shock velocities 

➢ PDF(cubic) has a spike due to its flatness

➢ Artymowicz: dust cloud – radiation interaction 
(Artymowicz and Clampin, 1997 )

➢ Ostriker: Jet-driven shock
(Ostriker et al., 2001)

➢ Wilkin: wind-cloud interaction 
(Wilkin., 1996)

(parabolic shape)

(cubic shape)

14

V. ConclusionsI. Introduction II. 1D shock model III. 3D bow shock model IV. SNR IC443



LE Ngoc Tram – ICISE 20187/11/18

Population of H
2 
excited levels 

 N
(v=0, J=3)

 (1D grid)PDF (parabolic shock)

N v , J
3 D

(u0)∼∫cs

u0

PDFu0
(u⊥ )N v , J

1 D
(u⊥ , age ,b∥)du⊥

Column density of a (v,J) level in the bow 

 Population of H
2
 excited level starts 

saturating at high terminal shock velocities. 
 u

0
=30 kms-1

N v , J
3D

(u0=30 kms−1
)
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1
J-shockCJ-shock

n
H
 = 102 cm-3, b0=1,age=105 yr

v = 0, J=3 
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Integrated H
2 
excitation diagram of bow shocks 
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Pure rotational levels 

rovibrational 
levels 
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Tram et al., 2018
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3D H
2
 diagram to interpret observations

OMC – Peak 1
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3D H
2
 diagram to interpret observations

OMC – Peak 1

➢ OH observations: B ~ 3 mG 
(Norris,1984)

➢ Polarization observation: B ~ 10 mG 
(Chrysostomou et al.,1994) 
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H
2
 line profile to interpret observations

● We constrain u
0 
~ 100 km/s, in good agreement 

    with the proper motion of the bullet
● We constrain i ~ 90o

100

OMC – Peak 1

(Brand et al., 1989)
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H
2
 line profile to interpret observations

19

HH54 observations
Santangelo et al. (2015) 

H
2
 1-0S(1)
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H
2
 line profile to interpret observations

HH54 observations
Santangelo et al. (2015) 

0-0S(4): E
up

 ~ 3500 K
1-0S(1): E

up
 ~ 6900 K

0-0S(9): E
up

 ~ 10261 K 

19

H
2
 1-0S(1)

Bow shock
n

H
 = 104 cm-3, u

0
=20 km s-1, age =102 yr, b

0
 = 1, i=-60o 
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HH7 SOFIA/EXE (PI: Neufeld.D)
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Position: ~ 1.5 kpc

Estimated age: 20,000 yr

Contains of many shocked regions:
8 clumps (A-H) via CO, HCO+ lines

Combination of shocks are
needed to explain the emission 
seen in these atomic and molecular t
racers

SNR IC443
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 (Neufeld et al. 2007)

21

H
2
 S(3)

H2 S(3)

G-region

C-region

H2 S(3)

H
2
 S(3)

G-region

SNR IC443 as seen by Spitzer-IRS
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H
2
 S(3)

H
2
 S(3)

H2 S(3)

G-region

C-region

H2 S(3)

SNR IC443 as seen by Spitzer-IRS
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H
2
 S(3)

H
2
 S(3)

H2 S(3)

G-region

C-region

H2 S(3)

SNR IC443 as seen by Spitzer-IRS
V. ConclusionsI. Introduction II. 1D shock model III. 3D bow shock model IV. SNR IC443

IC443, W28, W44, 3C391 SOFIA/EXE (PI: Reach. B. W)



LE Ngoc Tram – ICISE 20187/11/18 21

H
2
 S(3)

H
2
 S(3)

H2 S(3)

G-region

C-region

H2 S(3)

SNR IC443 as seen by Spitzer-IRS

B
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Magnetic field in SNR IC443G (Hezareh et al. 2013 )

Dust 
linear polarization

Blueshifted CO(2-1) 
linear polarization

Redshifted CO(2-1) 
linear polarization

APEX IRAM IRAM

B

22

D
ec

 o
ffs

et

Ra offset (arcsec)
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Dust 
linear polarization

Blueshifted CO(2-1) 
corrected linear polarization

Redshifted CO(2-1) 
corrected linear polarization

Magnetic field in SNR IC443G (Hezareh et al. 2013 )

B

22

D
ec

 o
ffs

et

Ra offset (arcsec)
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Conclusions
✔ Provide a mathematical formulation which links the bow shape to a distribution with 1D shocks.

✔ Confirm the results of the statistical equilibrium for a power-law distribution of gas temperature.

✔ Illustrations of how 3D bow shock model can improve significantly the match between model and observations in 
BHR71 and Orion OMC-Peak1.

✔ Show how different lines probe different parts of the shocks depending on the temperature sensitivity of the 
excitation of their upper level.

✔ 3D bow shock model can reproduce the broad velocity profile of the H
2
 1-0S(1) line in Orion Peak1 with a 

magnetization compatible with other measurements.

✔ Line shapes provide missing constraints on dynamical information.
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Thanks for your attention!

V. ConclusionsI. Introduction II. 1D shock model III. 3D bow shock model IV. SNR IC443

I am looking for postdoctoral possibilities ! 
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Orion as seen by JWST
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Power-law statistical equilibrium assumption

● The gas temperature follows the power-law distribution:
 

● The column density in T, T + dT
 

● For BHR71, b ~ 2.4 
 

● If the geometry of shock is taken into account, 
for a parabolic shock shape: b ~ -3.77

 

f (T )∼T−b

dN=aT−bdT

( Neufeld and Yuan, 2008; Neufeld et al., 2009; Neufeld et al., 2014)  

Appendix
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1D shock model to interpret BHR71

Gusdorf et al. , 2015

BHR 71 outflow

24’’

parameters value

n
H 104 cm-3

v
s 22 km s-1

b 1.5

age 3800 yrs

Best input parameters

Appendix
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First 3D shock model approximation

Model 
(Smith et al., 1991) 

Observations 
(Moorhouse et al.,1990)

➢ First introduced by Smith et al.,1990a

➢ Smith et al.,1991b reproduce the H
2
 line in OMC-Peak1

● C-shocks collection,
● LTE calculated H

2
 excitation    

● B = 50 mG required
But:

➢ OH observations: B ~ 3 mG (Norris,1984)

➢ Polarization observation: B ~ 10 mG 
(Chrysostomou et al.,1994) 

Appendix
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First 3D shock model approximation

➢ First introduced by Smith et al.,1990a

➢ Smith et al.,1991b reproduce the H
2
 line in OMC-Peak1

● C-shocks collection,
● LTE calculated H

2
 excitation    

● B = 50 mG required
But:

➢ OH observations: B ~ 3 mG (Norris,1984)

➢ Polarization observation: B ~ 10 mG 
(Chrysostomou et al.,1994)

➢ Smith et al.,1991b matches well the “medium” excitation 

Model 
(Smith et al., 1991) 

Observations 
(Rosenthal et al.,2000)

Appendix
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Effect of the bow parameters on H
2 
excitation diagram

Appendix
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3D H
2
 diagram to interpret observations

BHR 71 outflow

Fixed parameters 

n
H
 = 104 cm-3, b

0
 = 1.5

shock age = 103 yrs

3D model H
2
 diagram

χ
2

obs diagram

ψ

Best diagram

Best parameters

Δ v=21−23 km s-1

24’’

Free parameter 

Appendix
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3D H
2 
diagram to interpret observations

24’’

Our 1D model

BHR 71 outflow

- 45o

u
⊥
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3D H
2
 diagram to interpret observations

Orion Molecular cloud - Peak 1
➢ Fitting results

Appendix
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H
2
 line profile

H
2
 line profile is affected by

● Viewing angle

● When i = 0o, all the emission is blue-shifted.
● J-shock part of the bow shock structure causes the stronger emission
● As i increases, the line profile then becomes doubly peaked.

Appendix
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H
2
 line profile

H
2
 line profile is affected by

● Viewing angle
● Shock age

● When age proceeds, the J-type tail decreases,
● The temperature inside the J-shock decreases accordingly,
● The line profile becomes narrower,
● The width of 1-0S(1) can be used as the age indicator.

i=60o

Appendix
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H
2
 line profile

H
2
 line profile is affected by

● Viewing angle
● Shock age

i=60o

● 0-0S(1) probes the cold gas medium, the line profiles are narrower
● At early stages, there are still two peaks (signature for the J-shock)
● 0-0S(1) can be used as the J-shock indicator.

Appendix
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H
2
 Ortho/Para ratio

Neufeld et al., 2006

Appendix
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