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My talk 

• Review broad context of high-mass star-formation studies 

– Mainly focus on recent progress of observational studies 

– Not well focus on cosmic cycle of dust and gas 

 

• Contents 

– Introduction 

– Representative recent results, especially from ALMA 

– A few examples of our studies 



What is HM star? Why important? 

• How high mass (HM)? 

– Early B (B3 and earlier) and O stars 

– More massive than 8MSun 

– More luminous than 103 LSun 

 

• Significant impacts on astronomy, 
astrophysics, and astrochemistry 

– Influences on surroundings by strong UV, 
wind, explosion, ... 

ALMA (ESO/NAOJ/NRAO).  
Visible light image: the NASA/ESA 
Hubble Space Telescope 

10000 au 



Scale of high-mass Star-forming regions  

• From giant molecular cloud (GMC) complex to 
high-mass (HM) young stellar object (YSO) 

– Large-scale structures affected by YSO-scale events 

GMC, IRDC, clump, filament, fragment (hot) core, HCHII, disk, outflow, 
jet, HM-protostar 

0.1-10” or 102-104 au 
>105 cm-3 

100-1000 K 
~10 MSun 

>>10” or >>(sub)pc 
102-104 cm-3 

10 K 
>>10 MSun 

In case of Orion (Hirota+2018) 

10000 au 



Results of VLBI astrometry 
(Reid & Honma 2014) 

Normalized IMF (Offner+2014) 

Why so difficult? 

• Intrinsic characteristics of HM-YSOs/SFRs 

– 100 times rarer probability than low-mass stars 

– 1000 times shorter lifetime than low-mass stars 

– >10 times larger distances than low-mass SFRs 
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Why so difficult? 

• Observationally still challenging  

– Usually formed in clusters 

– Extremely high opacities unreachable at IR or shorter wavelengths 

– Only achievable by interferometers to resolve innermost structures 

Superstar cluster NGC3603 
(HST/NASA HP) 



Fundamental questions 

• How can HM-protostellar objects accrete their mass within 
short lifetime against strong feedback?  

 

• What is initial condition for HM star-formation? 

 

• How is stellar initial mass function determined? 

 

• How to solve these problems? 

– Study dynamical properties from host clouds to HM-YSOs 

– Chemistry complementary to physical/dynamical properties 

– Theoretical works also essential to interpret observational results 

 

 



• Two controversial theories 

 

• Turbulent core accretion (e.g. McKee & Tan 2002) 
– Scale-up of low-mass case (monolithic collapse) 

– High mass single YSO (binary or small cluster) 

     formed in a single massive turbulent core 

– Forming disk/outflow system 

 

• Competitive accretion (e.g. Bonnel+1997) 
– High mass YSO formed in the center of  

     low-mass cores/YSOs via global collapse 

– Fragmentation into small cores  

     with thermal Jeans mass 

– More disturbed disk/outflow system 

Accretion at clump and core scale 



Infrared dark clouds (IRDCs) 

• Good laboratory for investigating initial conditions 

– Characteristic filamentary structures sometimes with global inflow 

– e.g. SDC335; most massive core in the Galaxy (545 MSun at MM1) at 

infalling rate of 2.5x10-3 MSunyr -1; Peretto+2013, Avison+2015)  

Spitzer image, intensity, and velocity maps of N2H+ (1-0) line in SDC335.579-0.272 at 3.25 kpc (Peretto+2013, Avison+2015) 



Infrared dark clouds (IRDCs) 

High-mass 
starless core? 

High-mass 
young star 

• Search for massive starless (prestellar) cores/clumps 

– e.g. G011.92-0.61 MM2; massive (>30 MSun) core without any sign 
of star-formation activity (Cyganowski+2014, 2017) 

– e.g. G028.37+00.07; chemically evolved, massive (~60 MSun), 
magnetically virialized starless cores (Tan+2013, 2016, Gong+2016) 

– Still rare cases (and still not convincing) 

N2D+ (3-2) maps superposed on MIR extinction image of Spitzer and CO (2-1) 
outflow map of IRDC G028.37+ 00.07 at 5 kpc (Tan+2013, 2016, Kong+2016)  

CO (3-2), 1.3mm continuum, and Spitzer  maps 
of G11.92-0.61 at 3.37 kpc (Cyganowski+2014) 

High-mass 
starless core? 

High-mass 
young star 



Accretion at YSO scale 

Possible stellar mass as functions of mass 
accretion rate (Wolfire & Cassinelli 1987) 

• Well known feedback problem  

– Accretion suppressed by strong 
radiation pressure 

– Higher accretion rate than low-
mass YSOs 

– Solved by non-isotropic accretion 
through disk (”flashlight effect”; 
Yorke & Bodenheimer 1999) 

 

IR image of IRAS20126+4104, suggesting outflow 
cavity and edge-on disk (Cesaroni+2013) 



Radio continuum (VLA) 

 
 
 
 
 
 
 

Circumstellar disks before ALMA 

• Discovered by various tools, but mostly in B-type YSOs 

Model and VLTI image of IRAS 13481-6124 (Kraus+2010) 
SiO maser map of Orion Source I 
by VERA (Kim+2008) 

H2O (left) and CH3OH (right) masers and  
VLA continuum map in G353.273+0.641 (Motogi+2017) 

CH3OH maser map of Cepheus A 
by JVN(Sugiyama+2014) 

Molecular line maps of 
IRAS 20126+4104 by PdBI 
(Cesaroni+2006) 

Masers (VLBI) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NIR continuum (VLTI) 
 
 
 
 
 
 
 
 

Millimeter line 
(PdBI) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Circumstellar disks seen by ALMA 

• Even for distant O-stars 

– Keplerian rotation, infall 

– Accretion rate ~10-3MSun yr-1 

– More complicated due to  

    outflow, fragment, binary? 

 

Keplerian disk around AFGL4176 at 4.2 kpc (Johnston+2015) 

Outflow and disk in G29.96 at 
5.26 kpc (Cesaroni+2017) 

500 AU 
@2.2 kpc 

Map and spectra of G351.77-0.54 at 2.2/1 kpc (Beuther+2017) 



Case study of disk/outflow in Orion 

• Radio source I in  Orion KL 

– One of the well studied high-mass YSO 

– ALMA observations of high-energy lines at 
0.1” resolution (~42 au at 420 pc distance;  
(Hirota+2007, Menten+2007, Kim+2008) 

– Velocity gradient perpendicular to outflow 

 

Outflow rotation in Orion Source I (Hirota+2017) 

Moment 0 of Si18O J=12-11 
484 GHz at Band 8, El=128 K 

Moment 1 of H2O v=1 4,2,2-3,3,1  
463 GHz at Band 8, El=2744 K 

10000 au 

Moment 1 of Si18O J=12-11 
484 GHz at Band 8, El=128 K 



NE 

SW 

100AU 

Detailed structure of outflow 

• Rotating and expanding structure 

– Enclosed mass of 8.7+/-0.6 MSun  

– Centrifugal radii of 21-47 au 

– Velocity of ~10 km s-1 (no high velocity jet) 

– Rotating and radially expanding outflow 

PV diagram in Orion Source I (Hirota+2017) 



Evidence of rotating outflow/jet 

Model of high-mass protostar 
outflow (Matsushita+2017) 

• Consistent with magneto-centrifugal disk wind model 

– Possible Solution for angular momentum problem 

– Same as low-mass YSOs 

– Still challenging, need more data (see review by Belloche+2013) 

Jet rotation in a low-mass Class 0 protostar HH212 (Lee+2017) 



Moment 0 maps of U230.322 and 232 GHz H2O (v=1) lines (Ginsburg+2018) 

More recent studies 

• High excited lines of  

     H2O, SiO, and their  

     isotopologues 

– Recall Wong’s talk (AGB) 

 

• Keplerian rotation around 15+/-2 Msun YSO(s)  

Moment 0/1 maps SiO v=1 and v=4, J=11-10 line (Hirota+2018) 



Complex structure of outflows 

• Bipolar and explosive outflows in Orion KL 

– Energy release of 1048 erg via dynamical decay of multiple system  

    (e.g. Rodriguez+2017, Orozco-Aguilera+2017, Bally+2017) 

– Formation of a binary with ~20MSun (Ginsburg+2018) 

 

Explosive CO outflow observed with 
SMA (Zapata+2011) 

Explosive CO outflow 
observed with ALMA 
(Bally+ 2017) 

Source I 

Proper motion measured with 
VLA (Goddi+2011) 



• Luminosity in S255 NIRS3 from 2.9x104LSun to 1.6x105LSun
 

– First detected by methanol maser flare by single-dish monitoring 
(Fujisawa+2016, Moscadelli+2017) 

– Subsequent follow-up observations in continuum from IR to radio 
(Caratti o Garatti+2016, Cesaroni et al. 2018) 

– Suggesting accretion burst with mass accretion rate of 5x10-3 MSun 

 

 

Accretion burst in HM-YSOs 

Infrared flare (Caratti o Garatti+2016) and methanol maser flare in S255 at 1.8 kpc (Moscadelli+2017) 



• Luminosity increase by 70 (4.2x104LSun) in NGC6334I MM1 

– Both continuum and masers (Hunter+2017, MacLeod+2018) 

– Masers can be unique probes for episodic accretion burst 

Accretion burst in HM-YSOs 

Millimeter and maser outburst in NGC6334I MM1 (Hunter+2017, 2018, MacLeod+2018) 



Summary and future prospects 

• Observational studies at high resolution/sensitivity reveal 

– Global structure of IRDC clumps/cores 

– Potential but not convincing candidates of massive prestellar cores 

– Disks around O- and B-type YSOs with possibly Keplerian rotation 

– Outflow rotation in Orion Source I similar to low-mass YSOs 

– Episodic accretion burst events also identified by maser variability 

 

• Not discussed in my talk but here emphasize importance of  

– Theoretical works to cover large dynamic range of HM-SFRs 

– Further systematic survey at higher resolution/sensitivity 

– In particular chemistry and polarization (magnetic field) 

 

 


