The Cosmic Cycle of Dust and Gas in the Galaxy : from Old to Young Stars 9-13 July 2018, Quy Nhon

Molecular complexity in the star-forming region W43-MM1

Jordan MOLET

PhD student at the Laboratoire d'Astrophysique de Bordeaux

with N. Brouillet, T. Nony, F. Motte, D. Despois, S. Bontemps, A. Gusdorf, F.Herpin

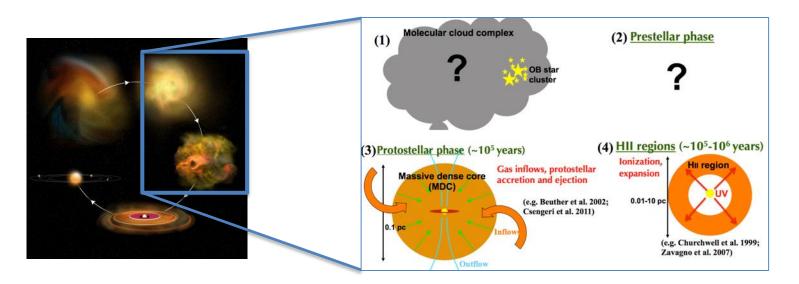
HUBBLE SPACE TELESCOPE / NASA / ESA

Outline

I. Scientific context

High-mass star formation & Complex molecules Presentation of W43-MM1

I. Data


ALMA Dataset Continuum emission : substraction

II. Analysis and results

Protostellar activity in W43-MM1 Method we use to identify the molecular lines Molecular content & analysis of a massive prestellar core candidate

Conclusion

Massive star formation

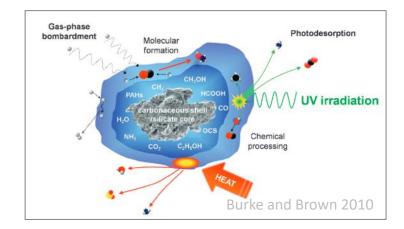
Radiation pressure overcome the accretion

Is an equivalent phase of low-mass stars prestellar cores exists for high-mass stars?

Difficulties to find high-mass prestellar cores :

o Number of high-mass stars lower than the number of low-mass stars

o Lifetime : 1-7x10⁴ yr for prestellar cores vs 3x10⁵ yr for protostars (Tigé et al. 2017)


o Formation in clusters

Complex molecules

New radio-telescopes provides high spectral sensitivity

Number of Atoms										
2	3	4	5	6	7	8	9	10	11	12+
H ₂	C3	c-C ₃ H	C5	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₂ C ₄ H	CH ₃ C ₃ N?	HC ₉ N	C ₆ H ₆
AIF	C_2H	1-C3H	C4H	1-H ₂ C ₄	CH2CHCN	HCOOCH ₃	CH3CH2CN	(CH ₃) ₂ CO		HC11N
AICI	C_2O	C_3N	C ₄ Si	C_2H_4	CH ₂ C ₂ H	CH ₃ COOH?	(CH ₃) ₂ O	NH2CH2COOH?	1	PAHs
C2	C_2S	C_3O	1-C3H2	CH ₃ CN	HC ₅ N	C ₇ H	CH3CH2OH			C60*?
CH	CH ₂	C ₃ S	c-C3H2	CH ₃ NC	HCOCH ₃	H_2C_6	HC ₂ N			
CH^+	HCN	C_2H_2	CH ₂ CN	CH ₃ OH	NH ₂ CH ₃	HOCH2CHO	C ₈ H			
CN	HCO	CH ₂ D*?	CH4	CH ₃ SH	c-C2H4O					
CO	HCO+	HCCN	HC ₃ N	HC ₃ NH ⁺						
CO ⁺	HCS ⁺	HCNH ⁺	HC ₂ NC	HC2CHO						
CP	HOC*	HNCO	HCOOH	NH ₂ CHO						
CSi	H_2O	HNCS	H ₂ CHN	C ₅ N						
HCI	H_2S	HOCO+	H_2C_2O							
KC1	HNC	H ₂ CO	H ₂ NCN							
NH	HNO	H ₂ CN	HNC3							
NO	MgCN	H ₂ CS	SiH4				ISN	Л		
NS	MgNC	H_3O^*	H ₂ COH*					••		
NaCl	N2H*	NH ₃								
OH	N_2O	SiC ₃					~			
PN	NaCN	CH ₃								
SO	OCS				20			aa data	+-	<u>م</u>
SO*	SO ₂				20	ju mo	necui	es dete	ecte	2U
SiN	c-SiC ₂					_				
SiO	CO ₂									
SiS	NH ₂									
CS	H3*									
HF	H-D*									

Reactions : gas phase + on grains

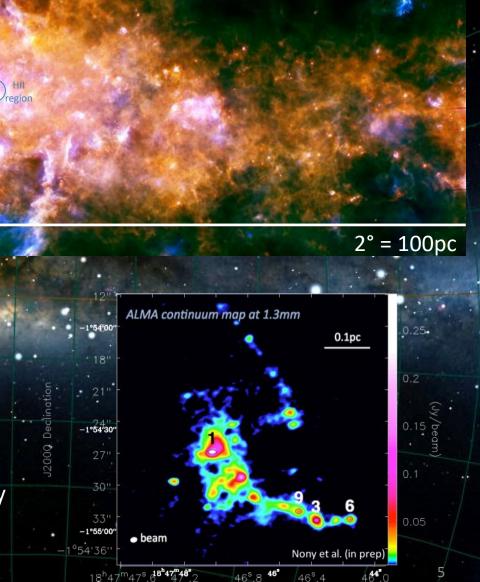
Relative distribution of molecules Physical conditions

Understanding of the chemistry of the ISM

MM1

W43-MM1

Distance : 5.5kpc from the sun Location : Galactic bar



Most massive core of W43 (\approx 3600M_{\odot}) SFE \approx 0.25M_{\odot}/yr (*Motte et al. 2003*)

Aquila.

OH, H2O and CH3OH masers → stellar activity

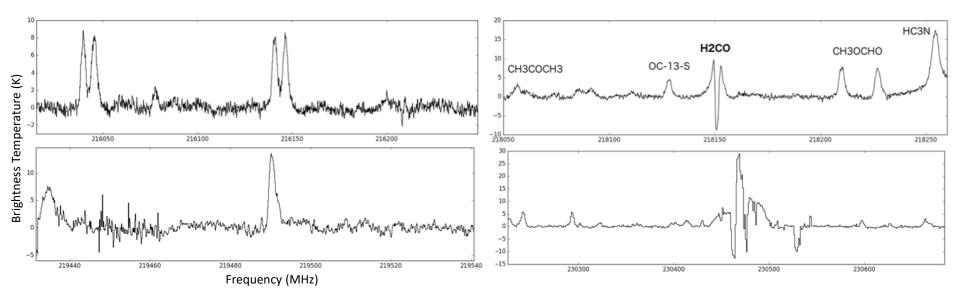
Several cores at the same distance and with the same high resolution


J2000 Right Ascension

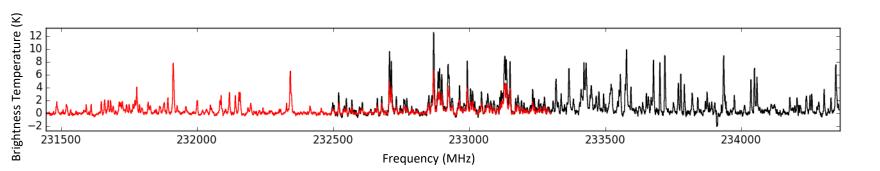
Dataset : Observations

Projects 2013.1.01365.S and 2015.1.01273 (Cycle 2 and 3, ALMA+ACA) Mosaic of 33 fields Band 6 (1.3mm) Total bandwidth : 4 GHz Spectral resolution : 122-976 kHz Spatial resolution : 0.5" (2400 AU)

Distribution of molecules
 Cores characterization

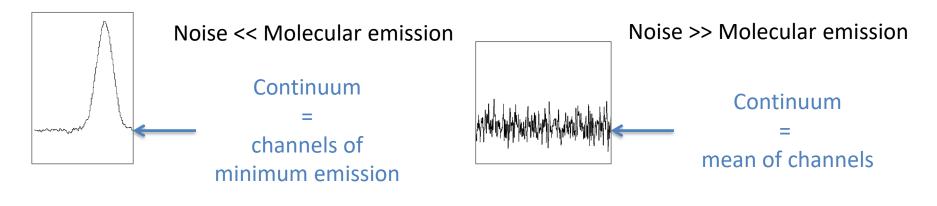

Project 019-17

Bands : 1.3mm, 2mm, 3mm Total bandwith : 154 GHz Spectral resolution : 195 kHz Spatial resolution : 9-30" (0.2-0.8 pc)

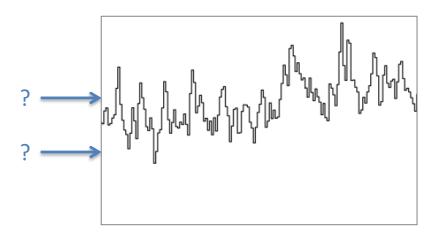

7

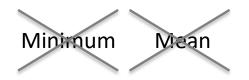
Dataset : ALMA Spectra

7 narrow bands (160-520 MHz), centred on lines of interest near 220 GHz



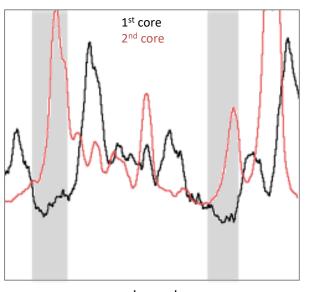
2 large "continuum" bands (≈1.9GHz) :



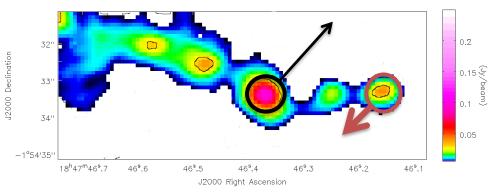

Continuum : Difficulties to determine the level

• Extreme cases

• More complex (realistic) spectra

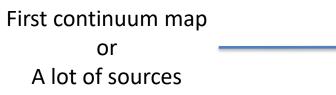


Statistical method to determine the continuum level

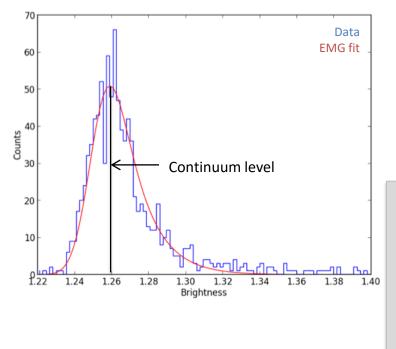

Continuum : Necessity to work by pixels

II – Data

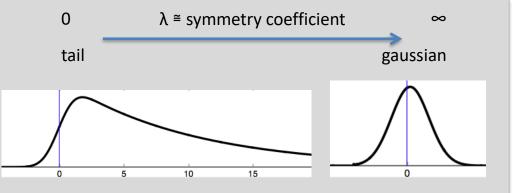
Each source is different from the others


channel

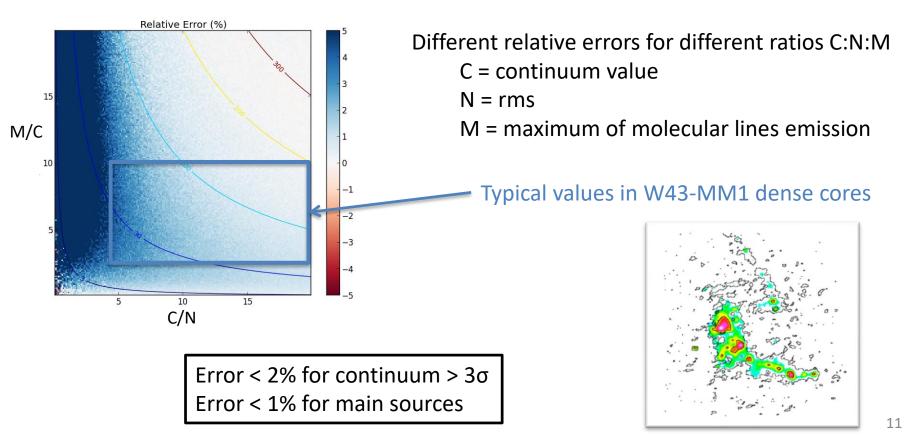
- 1st core continuum channels are not the same as for the 2nd core, because of : - a different velocity (Doppler effect)
 - a different molecular content


Automatic method to determine on each pixel

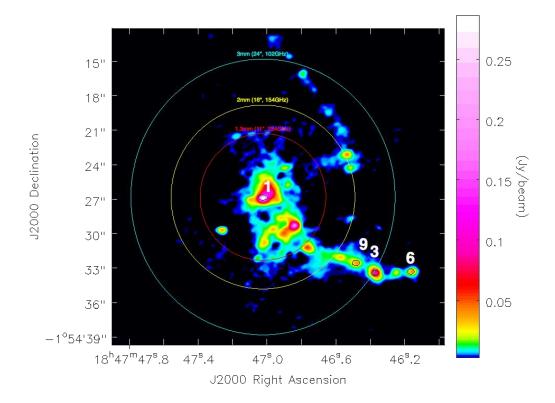
Continuum : Subtraction method


Use the distribution of intensity on each pixel :

- Gaussian part \rightarrow Noise
- Tail \rightarrow Molecular emission (right) or absorption (left)


Well fitted by the Exponentially Modified Gaussian (EMG) :

$$f_{EMG}(x) = Ae^{\frac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)} erfc(\frac{\mu+\lambda\sigma^2-x}{\sqrt{2}\sigma})$$

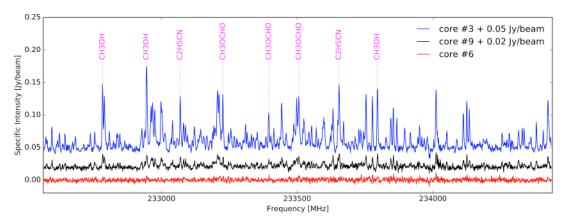

Continuum : Error estimation by simulation

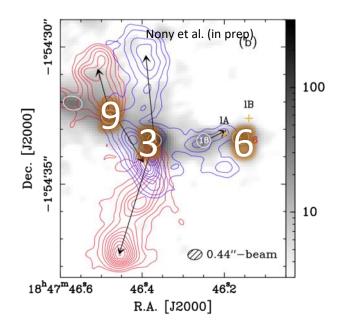
Sanchez-Monge et al. (2017) \rightarrow can't estimate the error with the fit \rightarrow Simulation Use of synthetic spectra with fixed lines parameters (FWHM, density ...) based on observations.

contours : 1%, 2% error

Continuum map reveals high-mass cores

Continuum map reveals 131 sources, including 13 high-mass protostellar cores with masses from 16 to 100 M_{\odot} (Nony et al. in prep).


Protostellar activity of W43-MM1


3 cores selected for the analysis

Core	RA	Dec.	FWHM	${ m S}_{1.3{ m mm}}^{ m int}$	$\overline{\mathrm{T}}_{\mathrm{dust}}$	$M_{\rm core}$
	[J2000]	[J2000]	[AU]	[mJy]	[K]	${ m M}_{\odot}$
1	18:47:47.02	-1:54:26.86	2300	592 ± 6	74 ± 2	102 ± 5
3	18:47:46.37	-1:54:33.41	1200	222 ± 2	45 ± 1	59 ± 2
6	18:47:46.16	-1:54:33.30	1300	94 ± 1	23 ± 2	56 ± 9
9	18:47:46.48	-1:54:32.54	1600	87 ± 3	50 ± 1	18 ± 1

Core #3 and 6 have the same mass ($60M_{\odot}$) in the same size (1300AU).

Outflows from core #3, but core #6 shows no outflow

Rich molecular content in core #3, while core #6 shows poor molecular content.

What is the identity of core #6?

26.75

26.50

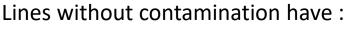
(^{ng}/ⁿ)25.75 25.50 25.50

25.00

24.75

Identification method

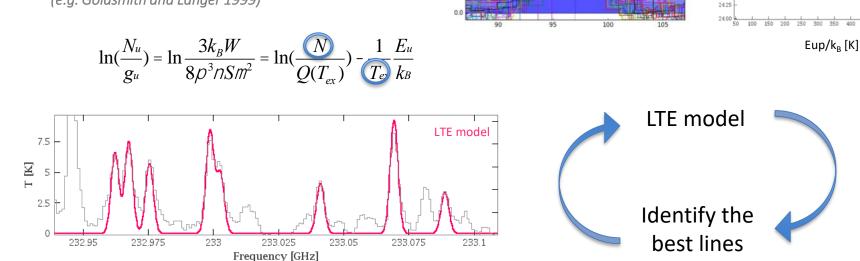
For each molecule :


- Identification of transitions based on CDMS and JPL databases

1.0

0.8

0.6


- Superposition of the corresponding lines normalised

- same velocity
- same dispersion

Rotationnal diagram :

(e.g. Goldsmith and Langer 1999)

Contaminated line

Detected species in cores #3, #6, and #9

	Core #3		Cor	e #6	Core #9		
	Tex [K]	N x10 ¹⁵ [cm ⁻²]	Tex [K]	N x10 ¹⁵ [cm ⁻²]	Tex [K]	N x10 ¹⁵ [cm ⁻²]	
CH ₃ OH *	302 ± 60	8000 *	39 ⁺	?*	344 ± 92	2000 *	
¹³ CH ₃ OH	210 ± 43	120 ± 20	1 trar	sition	205 ± 42	37 ± 8	
CH ₃ ¹⁸ OH	161 ± 52	29 ± 4	not de	tected	92 ± 50	3.9 ± 1.4	
CH ₃ CHO	150 ± 60	11 ± 1	30 ± 15	4 ± 2	110 ± 62	2.1 ± 0.5	
CH ₃ OCH ₃	145 ± 8	190 ± 20	1 trar	sition	185 ± 40	50 ± 10	
C₂H₅OH	91 ± 8	47 ± 7	not detected		67 ± 12	9 ± 3	
CH₃OCHO	195 ± 25	180 ± 20	74 †	6 †	256 ± 115	40 ± 10	
¹³ CH ₃ CN	131 ± 62	0.9 ± 0.2	not de	tected	154 ± 55	0.2 ± 0.1	
HC(O)NH ₂	180 ± 60	2.5 ± 0.6	not de	tected	110 ± 40	0.5 ± 0.1	
C₂H₅CN	206 ± 15	9±1	not detected		190 ± 70	1.9 ± 0.4	

+ high uncertainty* optically thick

25 species identified in ALMA data

 \rightarrow Possibility to map their distribution

Typical values of hot cores for cores #3 and 9 **Core #6 is colder**

 $\Delta v \approx 3$ km/s for core #6 $\Delta v \approx 5$ km/s for core #3 and 9

Other species detected							
СО	C ¹⁸ O	H ₂ CO *	H ₂ ¹³ CO				
SiO	CH ₃ COCH ₃	¹³ CS	H ₂ C ³⁴ S				
OCS *	O ¹³ CS	OC ³³ S	SO				
DCN	HC_3N	C ₂ H ₃ CN					

80% of lines identified

CONCLUSION

W43-MM1 may contain a good high-mass prestellar core candidate:

- No outflow observed (no sign of star formation)
- Colder than nearby hot cores of the same masses.

PROSPECTS

Modelization of the source #6.

Identification of more species with ALMA core #1 and 30m spectra analysis. Maps and molecular content (N, Tex) of all high-mass cores : put an evidence on the evolution of the cores?

Thank you !