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Comets and meteorites: messengers of ISM chemistry?

I in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta

I detection of many organic molecules (Altwegg+ 2017):
CH4, HCN, C2H6, H2CO, CH3NH2, CH3OH, CH3CN, HNCO, CH3CHO, C3H8,

NH2CHO, C2H5OH, H2CS, HCOOH, CH3SH, C4H10, CH3C(O)CH3,

CH3C(O)NH2, C3H7NH2, C3H7OH...

→ Many of them known to exist in the ISM

I detection of amino acid glycine NH2CH2COOH (ROSINA, Altwegg+ 2016),
confirming detection in samples returned from comet Wild 2
(Stardust, Elsila+ 2009)

I > 80 amino acids found in meteorites, with isotopic composition and
racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)

⇒ is molecular complexity of comets/meteorites a widespread outcome of
interstellar chemistry? What is the degree of chemical complexity in the ISM?
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Molecules in the interstellar medium

(http://www.cdms.de/)

I 209 molecules detected in the ISM or in
circumstellar envelopes
over 8 decades (1937–2018)
(only 3 before 1963)

I on average since 1963 (radio astronomy),
about 7 new molecules every 2 years,
and even 6 per year since 2006

I 14 new detections in 2017–2018!

I complex molecules (for astronomers): ≥ 6 atoms (Herbst & van Dishoeck 2009)

I one third of detected molecules are complex

I all detected complex molecules are organic (COMs)

⇒ where are COMs found in the interstellar medium?
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COMs in various interstellar environments
I hot cores/corinos (> 100 K): e.g., Sgr B2, Orion KL, IRAS 16293, NGC 1333-IRAS 4A

(e.g., Snyder+ 1994, Ziurys+ 1993, Cazaux+ 2003, Bottinelli+ 2004)

I lukewarm corinos (∼30 K, warm carbon-chain chemistry): e.g., L1527, L483

(e.g., Sakai+ 2008, Hirota+ 2009)

I shocked regions: e.g., CMZ clouds, L1157 outflow, IRAS 20126+4104 outflow

(e.g., Requena-Torres+ 2006, Arce+ 2008, Palau+ 2017)

I photodissociation regions: e.g., Horsehead, Orion Bar

(e.g., Guzmán+ 2014, Cuadrado+ 2017)

I cold, quiescent regions (∼10 K): e.g., TMC 1, B1-b, L1689B, L1544

(e.g., Suzuki+ 1986, Öberg+ 2010, Bacmann+ 2012, Vastel+ 2014)

I diffuse/translucent clouds (low densities): galactic and extragalactic

(e.g., Turner 1998, Muller+ 2011, Corby+ 2015, Thiel+ 2017, Liszt+ 2018)

I protoplanetary disks: e.g., MWC 480, TW-Hya, V4046 Sgr

(e.g., Öberg+ 2015, Walsh+ 2016, Bergner+ 2018)

I circumstellar envelopes around evolved stars: e.g., CRL 618, IRC+10216

(e.g., Bujarrabal+ 1988, Cernicharo+ 2000)

⇒ how do COMs form in the interstellar medium?
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(e.g., Suzuki+ 1986, Öberg+ 2010, Bacmann+ 2012, Vastel+ 2014)

I diffuse/translucent clouds (low densities): galactic and extragalactic

(e.g., Turner 1998, Muller+ 2011, Corby+ 2015, Thiel+ 2017, Liszt+ 2018)

I protoplanetary disks: e.g., MWC 480, TW-Hya, V4046 Sgr
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Processes building up chemical complexity in the ISM
I gas phase chemistry: mainly driven by ions

I grain surface chemistry: mainly driven by radicals produced by energetic
photons or cosmic rays

I hot-core models: warm-up phase increases mobility of radicals and
promotes their recombination to form COMs that subsequently desorb
(e.g., Garrod+ 2008)

I COMs in prestellar cores at low temperature (Öberg+ 2010, Bacmann+ 2012):
I reactive desorption of COM precursors followed by radiative

association? (Vasyunin & Herbst 2013b)
I cosmic rays: cosmic-ray induced radical diffusion? (Reboussin+ 2014)

impulsive spot heating on grains? (Ivlev+ 2015)

new solid-phase radiolysis processes? (Shingledecker+ 2018)
I non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
I revision/expansion of gas-phase reaction network? (Balucani+ 2015)

How to make progress? (gas phase vs. grain surface? relevant reactions? reaction rates?)

⇒ interplay between observations, astrochemical modeling, and experiments
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I reactive desorption of COM precursors followed by radiative

association? (Vasyunin & Herbst 2013b)
I cosmic rays: cosmic-ray induced radical diffusion? (Reboussin+ 2014)

impulsive spot heating on grains? (Ivlev+ 2015)

new solid-phase radiolysis processes? (Shingledecker+ 2018)
I non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
I revision/expansion of gas-phase reaction network? (Balucani+ 2015)

How to make progress? (gas phase vs. grain surface? relevant reactions? reaction rates?)

⇒ interplay between observations, astrochemical modeling, and experiments



Complex organic molecules in the ISM Interstellar chemistry 7 / 23

Processes building up chemical complexity in the ISM
I gas phase chemistry: mainly driven by ions

I grain surface chemistry: mainly driven by radicals produced by energetic
photons or cosmic rays

I hot-core models: warm-up phase increases mobility of radicals and
promotes their recombination to form COMs that subsequently desorb
(e.g., Garrod+ 2008)

I COMs in prestellar cores at low temperature (Öberg+ 2010, Bacmann+ 2012):
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Chiral molecules

(McGuire et al. 2016, Science, 352, 1449)

I life on Earth based on homochirality (L-amino acids, D-sugars)

I enantiomeric excess found in meteorites (e.g., Pizzarello+

2011)

I PRIMOS: spectral line survey of Sgr B2(N) with GBT
(1–50 GHz, PI: A. Remijan), mainly sensitive to large-scale, low
density layers, where shocks drive COM sublimation (?)

I detection of propylene oxide CH3CHCH2O in absorption
toward Sgr B2(N) with GBT and Parkes

I propylene oxide is chiral:

I other chiral molecules? deuterated ethyl cyanide CH3CHDCN tentatively
detected (with ALMA; Belloche+ 2016); 2-aminopropionitrile CH3CH(NH2)CN not
detected (neither IRAM 30 m telescope nor ALMA; Møllendal+ 2012, Richard+ 2018)

I can an enantiomeric excess in the ISM be measured? Possibly via circular
dichroism (see discussion in McGuire+ 2016)
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Aromatic molecules
I polycyclic aromatic hydrocarbons (PAHs) thought to be the carriers of

unidentified infrared bands (e.g., Tielens 2008), but none firmly identified so far

(McGuire et al. 2018, Science, 359, 202)

I detection of benzonitrile c-C6H5CN in
emission with GBT toward
cold dense core TMC-1

I 2nd aromatic molecule known in the ISM
after benzene c-C6H6 (Cernicharo+ 2001, but one

weak IR feature only)

(apart from fullerenes C60 and C70; Cami+ 2010)

I formation of aromatic molecules: radiation chemistry? (e.g., electron irradiation of

acetylene gas or ice forms benzene; Field 1964, Zhou+ 2010)

cyclization process of large cyanopolyynes HCnN? (Loomis+ 2016)

I benzonitrile precursor to polyaromatic species? (bottom-up process)
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Branched molecules
(Belloche et al. 2014, Science, 345, 1584; Garrod et al. 2017, A&A, 601, A48)

I EMoCA: spectral line survey of Sgr
B2(N) at 3 mm with ALMA

I detection toward Sgr B2(N2) of
i-C3H7CN, branched form of n-C3H7CN

I i-C3H7CN nearly as abundant as n-C3H7CN ([i-C3H7CN] / [n-C3H7CN] = 0.4)

I [i-C3H7CN] / [n-C3H7CN] well reproduced by hot-core chemical model MAGICKAL

(Garrod+ 2017, first inclusion of branched alkyl molecules in a reaction network!)

⇒ new domain in structures available to the chemistry of star-forming regions

I amino acids in meteorites: branched isomers even dominate over
straight-chain ones (e.g., Cronin & Pizzarello 1983)

⇒ detection of i-C3H7CN establishes further link between
chemical composition of meteorites and interstellar chemistry
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Do branched molecules dominate in the ISM?

n-C4H9CN i-C4H9CN s-C4H9CN t-C4H9CN

chiral!

Garrod+ 2017

I model predicts that branched isomers of butyl cyanide (C4H9CN) should
dominate over straight-chain form in Sgr B2

⇒ observational test: search for butyl cyanide with ALMA!

I lab. spectroscopy done in Cologne (Ordu+ 2012, Müller+ 2017, Wehres+ 2018)

I on-going Cycle 4 project targetting Sgr B2(N), follow-up of EMoCA
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Chemical composition of protostars
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Complex organic molecules in Class 0 protostars

I presence of COMs in some Class 0 protostars well established
(e.g., IRAS 16293-2422: Cazaux+ 2003, Jørgensen+ 2016; NGC 1333-IRAS4A/4B/2A:

Bottinelli+ 2004, 2007)

I origin of COMs in Class 0 protostars debated:
I hot inner region of the envelope (hot corino, Bottinelli+ 2004)

I impact of outflow (shear zones, UV irradiation through cavity; Blake+ 1995,

Öberg+ 2011, Drozdovskaya+ 2015)

I warm layer/atmosphere of accretion disk (Jørgensen+ 2005, Lee C.-F.+ 2017)

I ring of low-velocity shocks at centrifugal barrier (Codella+ 2018)

I need for high angular resolution and large sample of sources to
investigate dependence on mass, luminosity, evolutionary stage

⇒ CALYPSO survey (Continuum and Line in Young ProtoStellar Objects) well suited:

I Large Program with NOEMA (100–200 au resolution; PI: Ph. André)

I source sample: 16 of the closest Class 0 protostars (d < 420 pc)
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NOEMA spectra of Calypso sources
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COMs in Calypso sources: line counts
Maps of number of channels with line emission above 6σ (δv∼2.6 km s−1)

(within 216.8–220.5 and 229.2–232.8 GHz, excluding CO, 13CO, C18O, SiO, SO, OCS)

I 6 sources with clear
“hot-corino” signature
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COM composition of CALYPSO sources
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Three types of COM composition?
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Correlations between COMs

I 95% confidence interval of
Pearson correlation coefficient

I whatever type of normalization,
correlation found for:
CH3CN & CH3OCH3,
CH3CN & CH3OH,
NH2CHO & CH3OH,
CH3CHO & CH3OCHO

...

⇒ correlation does not imply chemical
link between species!
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Correlation with source properties?

I no obvious correlation between
(normalized) COM column densities and
envelope mass Menv, internal luminosity
Lint, or Menv/Lint (evolutionary tracer)...

⇒ COM composition not an evolutionary
indicator during accretion phase?

or Menv/Lint not an evolutionary tracer?

I ...except for anticorrelation between Lint
and abundances of CH2(OH)CHO, CH3CHO,
and C2H5OH relative to methanol

⇒ chemical complexity reduced
when UV radiation stronger?

(but is there significant UV flux at these scales?)
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Outlook (1)

COMs in Class 0 protostars
I COM composition does not seem to be an evolutionary indicator

→ due to episodic accretion?

I Three types of COM composition: what does this tell us? Implications for
chemical composition of protosolar nebula?

Molecular complexity
I interstellar chemistry produces chiral, aromatic, and branched molecules!

I do branched isomers dominate in star-forming regions?

→ test of model predictions with ALMA: on-going search for C4H9CN (4 isomers)
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Outlook (2)

Exploring molecular complexity: how to beat the confusion limit?

I go to lower frequencies: ALMA bands 1 and 2, ngVLA, SKA?
(see also PRIMOS spectral survey of Sgr B2(N) with GBT, PI: A. Remijan)

I target sources with narrower linewidths
(see, e.g., PILS spectral survey of hot corino IRAS 16293-2422 with ALMA, PI: J. Jørgensen;
detection of CH3OCH2OH in NGC 6334I-MM1, McGuire+ 2017)
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