Magnetic Fields in Molecular Clouds

Patrick Koch (ASIAA, Taiwan)

CSO/SHARP

with

Ya-Wen Tang, Hsi-Wei Yen, Paul Ho, Shigehisa Takakuwa, Yu-Nung Su, Nicolas Peretto, Ana Duarte Cabral, Giles Novak, Nicholas Chapman

SMA

ALMA

Quy Nhon, Vietnam; July 12, 2018

outline

motivation: B-field, why and how? filamentary infrared dark cloud G34.43 In high-mass star-forming region: W51 e2, e8, North ø beyond imaging: novel analysis techniques and statistics Indirect constraint on B-field: specific angular momentum profile in young stellar objects

why should you care about magnetic fields in star-forming regions ?

- * field strength is measured (e.g. Zeeman splitting), 0.1 mG to a few mG, can be dominating, comparable or at least non-negligible as compared to thermal pressure, gravity, centrifugal force
- * magnetic field is fundamental physical constituent, i.e., Lorentz force, addressing basic concepts of flux-freezing, ambipolar diffusion
- * with ALMA's sensitivity, fidelity and absolute calibration:
 need to expect to see magnetic field influence ("indirect" measurements)
 e.g. different dynamics, different velocities and time scales

context and key questions around B-field

In how does the B-field affect dynamics of star formation ? B-field versus gravity, B-field versus turbulence ? can the B-field influence star-formation efficiency ? In how are B-field and gas coupled ? is magnetic braking in protostellar disks happening ? In the second second

Magnetic Field Observational Techniques

5

main difficulty: weak signal, ~ few % of Stokes I

(Chapman et al. 2011)

* Zeeman splitting: needs strong enough line emission, can get field strength, typically isolated and local

synchrotron radiation:
 needs relativistic electrons,
 typically not observed

 * absorption of background star light by dust (polarization in optical / NIR) only morphology, no field strength

thermal dust emission
(polarization in mm / submm bands)
only morphology, no field strength

Dust Polarization Mechanism

Molecular cloud CS CO H_2 $n_{H_2} \sim 10^{4-7} (cm^{-3})$ T~10(K)

Polarization

paramagnetic, elongated, rotating Radiative Alignment Torque (RAT) theory

(e.g. Hildebrand 1988, Lazarian 2000,

Hoang & Lazarian 2016, Andersson+2015)

- individual dust particle: dipole
- in submm: linear polarization from thermal dust emission
- coherent alignment mechanism: B field is one possibility
- mechanism provides only projected field orientation/morphology
- need something more to derive field strength

Magnetic Field in Filamentary IRDC

- filaments are ubiquitous (Herschel)
- being established as an essential building block in SF process
- how are they formed in a first place? how are the denser structures within filaments formed? what is the role of the B-field in this process?

- example observation/analysis: G34.43

B211/213 filament in Taurus; (ESA/Herschel)

IRDC G34.43

- distance: 3.7 kpc, elongated length ~ 8 pc
- mass: 1200 M_sol (mm1), 1300 M_sol (mm2)
 300 M_sol (mm3)
- overall, very small viral parameter

 (α ~ 0.2), system gravitationally bound, but
 SF efficiency only ~ 7%.
 additional support from B-field ?
- observed with the CSO/SHARP ($350\mu m$, resolution 10")
- polarization percentage 0.4 10%
- B-field clearly organized perpendicular to longer axis around mm1/mm2; more aligned with longer axis on mm3, small dispersion
- add line kinematics:
 N₂H+ (1-0) from IRAM-30m (θ~28"),
 clear large-scale gradient

B-field, velocity gradient, turbulence & gravity

which component is dominant? negligible? - benchmark analysis

B vs v: small differences and spatially not random, but organized B vs G: spatially not random, but organized (Tang+2018)

9

How Important is the B-field in G34.43 ?

which component is dominant? negligible? - benchmark analysis

Object	 (M⊙)	R (pc)	$(cm^{-11}H_2)$	Δv (km/s)	$\frac{\sqrt{\langle B_t^2\rangle}}{B_0}$	$rac{\sqrt{\langle B_l^2 angle}}{B_0}_{ m N}$	N	φ _B (°)	$\begin{array}{c} B_{\perp} \\ (mG) \end{array}$	$\Sigma_{\mathbf{B}}$	λ	$lpha_{ m vir}$	P _T (10	$P_{ m B}$ 9 dyn/	$u_{ m G}$ cm ²)	Relative importance
MM1 MM2 MM3	422 422 275	0.23 0.23 0.32	$\frac{1.2 \cdot 10^5}{1.2 \cdot 10^5}$ $\frac{2.9 \cdot 10^4}{2.9 \cdot 10^4}$	$1.2 \\ 1.5 \\ 0.9$	0.21 0.11 0.35	$\begin{array}{c} 0.92 \\ 0.49 \\ 1.07 \end{array}$	21 22 11	17 9 20	$0.5 \\ 1.1 \\ 0.2$	0.35 0.44 0.63	1.3 0.6 1.4	0.9 1.4 1.1	12.1 18.9 1.6	$14.2 \\78.9 \\1.4$	$26.5 \\ 26.5 \\ 3.0$	G>B>T B>G>T $G>T\geq B$

NOTE. Columns are mass (M), radius (R), number density (n), velocity dispersion along the line of sight (Δv) , turbulent-to-mean magnetic field ratio $(\frac{\sqrt{\langle B_l^2 \rangle}}{B_0})$, turbulent-to-mean magnetic field ratio corrected for the number of turbulent cells $(\frac{\sqrt{\langle B_l^2 \rangle}}{B_0})$, number of turbulent cells within the beam (N), dispersion of the polarization position angles at the resolution scale of 9.5 (ϕ_B) , B field strength in the plane of sky derived from the CF method (B_{\perp}) , magnetic field-to-gravity force ratio Σ_B based on the intensity gradient method, ratio of the observed mass-to-flux ratio and the critical mass-to-flux ratio (λ) , virial parameter $(\alpha_{\rm vir})$, turbulent pressure $(P_{\rm T})$, B field pressure $(P_{\rm B})$, gravitational energy density $(u_{\rm G})$, and the relative importance between gravity (G), B field (B), and turbulence (T).

different local interplay between B-field, turbulence, and gravity on core scale

 \Rightarrow consequence for fragmentation towards next smaller scale?

Fragmentation in G34.43

G > T ≧ B largest dispersion in B weakest B smallest mass

> <u>no fragmentation</u> systematic dispersion in B (drag) medium B larger mass

B > G > T <u>aligned fragmentation</u> smallest dispersion in B strongest B larger mass

Tang+2018 SMA: Zhang+14; Chen+in prep. CARMA: Hull+14

Higher-Resolution B-field Measurements

- W51 high-mass SF site at $d_{\sim}5.4$ kpc
- several UCHII regions and infalling signatures detected
- elongated structure, with B-field mostly perpendicular (BIMA, $\theta \sim 3''$, Lai+2001)
- SMA observations: resolved B-field in cores with $\theta \sim 0.7''$ (Tang+2009)

W51 e2/e8 with BIMA and SMA

- W51 high-mass SF site at d~5.4 kpc
- several UCHII regions and infalling signatures detected
- elongated structure, with B-field mostly perpendicular (BIMA, $\theta \sim 3''$, Lai+2001)
- SMA observations: resolved B-field in cores with $\theta \sim 0.7''$ (Tang+2009)

W51 North with CSO and SMA

(Tang+2013)

- clearly varying B-field structure as a function of scale
- channeling from North and South towards mid-plane
- denser cores in mid-plane along east-west direction

First ALMA Polarization Observations towards W51

ALMA cycle 2/3 (230 GHz (B6), θ ~ 0.26"~ 5 mpc; Koch+2018)

ol. percentages ~ 0.1 - 10%; sensitivities 1mJy/b in Stokes I, 0.1 mJy/b in Q,U

First ALMA Polarization Observations towards W51

ALMA cycle 2/3 (230 GHz (B6), θ ~ 0.26"~ 5 mpc; Koch+2018)

ol. percentages ~ 0.1 - 10%; sensitivities 1mJy/b in Stokes I, 0.1 mJy/b in Q,U

new sub-structures:

cometary-shaped B-field in e2-NW, e8-5, symmetric convergence zones (yellow) 16

First ALMA Polarization Observations towards W51

ALMA cycle 2/3 (230 GHz (B6), θ ~ 0.26"~ 5 mpc; Koch+2018)

ol. percentages ~ 0.1 - 10%; sensitivities 1mJy/b in Stokes I, 0.1 mJy/b in Q,U

new sub-structures:

cometary-shaped B-field in e2-NW, e8-S, symmetric convergence zones (yellow) 17

Magnetic Field Convergence Zones

Gravity vs Magnetic Field

• *How important is the magnetic field in e2-E, e2-W and e2-NW ?*

- In which cores can it still slow down gravitational infall ?
- Where is the field already overwhelmed by gravity, and might there be even local differences within the same core?

contour

- compare local direction of B-field (n_B)
 with direction of local gravity (g)
- adopt ideal MHD force equation

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -\nabla P - \rho \nabla \phi + \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{n}_B$$

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) \mathbf{v} = -\nabla P - \rho |\nabla \phi| \mathbf{g} + \frac{1}{4\pi} \frac{1}{R} B^2 \sin \omega \, \mathbf{g} + \frac{1}{4\pi} \frac{1}{R} B^2 \cos \omega \, \mathbf{n}_g$$

sin ω quantifies B-field effectiveness to oppose gravity

(Koch+2018)

Convergence Zones, Magnetic Channelling and Star Formation Efficiency

- sinω, in the range between 0 and 1, measures how effectively the B-field can oppose gravity.
 - sinω~0: gravity/collapse proceeds freely sinω~1: B-field works maximally against gravity, holding back material
- W51 e2: network of narrow magnetic channels (black) with sinω~0
- note: many channels coincide with convergence zones
- <u>consequence for star formation efficiency?</u>
 - assume ~ 2" diameter sphere, ~0.15" channel width, ~10 channels
 - 1 channel ~ 0.4% of entire mass (volume); if only mass within channels takes part in star-formation process: star-formation efficiency reduced to ~ 4% for W51 e2

Convergence Zones, Magnetic Channelling and Star Formation Efficiency

Key Observable: angle δ

What can we learn from δ ?

Magnetic Field Strength Map Field-to-Gravity Force Ratio Σ_B

Increasing Sample Size: SMA Polarization Legacy Program and CSO archival data

* about 20 additional sources (new or deeper integration, dedicated SMA legacy program, Zhang + SMA pol legacy team, 2014)

total: about 30 sources in polarization with the SMA

* high-mass sites with density > 10⁵ cm⁻³ on scales 0.1 to 0.01 pc, resolutions around 1" - 3"

* additionally: CSO archival data (about 20 sources), covering scales around 1 pc

* total sample: 50 sources (low- and high-mass star forming regions)

Beyond Imaging: Statistics 50-source sample SMA / CSO observations

IIB

- field morphology is <u>organized</u> (not necessarily uniform, but clearly not random)
- field morphologies are systematic key observable: angle δ between emission gradient and magnetic field

δ across a Sample of 50 sources (SMA+CSO)

(Koch+ SMA pol legacy, 2014)

- average $<|\delta|>$ is systematically different across sample
- <|δ|> is typically small for sources with magnetic field parallel to source minor axis, <|δ|> grows for sources with field parallel to major axis
 <Σ_B> grows systematically with <|δ|> with a transition across 1

where are we standing? one step back: Larger Scale Interstellar Medium by Planck

Taurus molecular cloud complex; dust continuum at 350 GHz 15' resolution

(Planck XXXII, 2014)

Planck: Interstellar Medium

(Planck XXXII, 2014)

magnetic field vs structure:

- field tends to be aligned with ridges in diffuse ISM
- alignment progressively changes
 as column density increases

- interpretation:

magnetic field is guiding material, possibly significant level of turbulence organizing material parallel to magnetic field

- question:

how does the role of the magnetic field evolve towards smaller scales?

utilize dust polarization
 observations on smaller scales
 with the SMA, CSO, JCMT, (ALMA)

SMA Polarization Legacy Program + CSO Archival data: Magnetic Field vs Dust Continuum Structure

- prevailing field orientation: roughly parallel to source minor axis
- <u>connecting to Planck result:</u> (Planck XXXII, 2014/2016)
 field tends to be aligned with diffuse ridges in diffuse ISM, but progressively changes as column density increases
- magnetic field very likely plays different roles as a function of scales and location

Numerical Work

- simulating large-scale filamentary structures (Planck, BLASTPol)
- "Histogram of Relative Orientations" between magnetic field and density structures (equivalent to angle δ)
- histograms carry information on magnetization, age, and column density

(Soler, Hennebelle+2013)

Conclusions

filament: * organized B-field, mostly perpendicular to filament,
 B-field channelling material, "G vs B vs T" locally different
 * relative significance of G,B, and T hints different fragmentation scenarios

 ALMA: * detailed magnetic field morphologies reveal dynamical picture: convergence zones, magnetic channelling, cometary-shaped satellites
 * sin ω quantifies B-field effectiveness to oppose gravity

- protostellar source: * tracing spec. ang. mom. profile can constrain magnetic braking

- analysis techniques: δ is a key observable, leading to local field strength measurement and local force ratio Σ_B

- sample:

* δ and Σ_B discriminate between different types of magnetic-field configurations (possibly different evolutionary stages)

* sample of 50 sources: δ and Σ_B show clear correlation; i.e., the larger δ , the more the field dominates gravity

additional slides

A Note on Polarized Emission and Polarization Percentages

- complicated but organized structure in polarized emission \mathbf{I}_{p}
 - some correlation with local B-field dispersion S (also seen on larger scales in Fissel+2016; Planck XIX, XX, 2015)
 - typical anti-correlation between polarization
 percentage p and total intensity Stokes I, slope ~
 -1, but with very large scatter

A Note on Polarized Emission and Polarization Percentages

35

- complicated but organized structure in polarized emission \mathbf{I}_{p}
- some correlation with local B-field dispersion S (also seen on larger scales in Fissel+2016; Planck XIX, XX, 2015)
- typical anti-correlation between polarization percentage p and total intensity Stokes I, slope ~ -1, but with very large scatter

What is δ ?

(Koch, Tang & Ho, 2012a, b; 2013)

project n_B into orthonormal system (normal, tangential to contour)

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -\nabla P - \rho \nabla \phi + \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{n}_B$$

$$\rho\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -\nabla P - \rho \nabla \phi + \sin|\delta| \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{n}_{\rho} + \sin|\alpha| \frac{1}{4\pi} \frac{1}{R} B^2 \mathbf{t}_{\rho}$$

- δ measures alignment
- fraction of field tension force oriented along gradient
- δ quantifies local magnetic field-to-gravity force ratio Σ_B

New Method for Local Magnetic Field Strength

δ across a Sample of 50 sources (SMA+CSO): mass-to-flux ratio

(Koch+ SMA pol legacy, 2014)

W51 North form large to small scales

Specific Angular Momentum Profile

indirect way: - can precisely measure / model profile with ALMA

- if angular momentum removed from envelope to inner disk, observable in profile

No disk > 10 AU

Yen+2015

- associate removal with magnetic braking, get B strength

• Structures from 0.1 pc to 40 AU

Specific Angular Momentum Profile

41

Specific Angular Momentum Profile

alternative: different infalling radius, younger age

42