Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

Toshikazu Onishi (Osaka Prefecture Universiity)

GMC as a site of high-mass star formation

From galaxy evolution to individual star formation

Clumps, Cores $10^{2}-10^{3} \mathrm{Mo}$ $\mathrm{n}\left(\mathrm{H}_{2}\right) \sim>10^{4} \mathrm{~cm}^{-3}$
<0.1 pc

GMCs: $10^{4}-10^{6}$ Mo $\mathrm{n}\left(\mathrm{H}_{2}\right) \sim 1000 \mathrm{~cm}^{-3}$

Wide range of scales Various distances
Use of various telescopes

Star formation in GMCs

* Most stars form in GMCs
\curvearrowright K-S law: Gas surface density - SF activities
- Gas \rightarrow SF is a "key" to understand the galaxy's evolution
* Key issue for galaxy evolution
\star GMC properties in the MW as templates
- Some scaling relations (e.g., Solomon et al. 1987)
- The samples are biased to the neayby GMC?
+ Not a representative for the MW?
» Magellanic Clouds + some local galaxies
- Recent high resolution observations + "Uniform" sample
+ Uniform sample of high mass formation from GMC scale down to core scale
- bridging between MW GMCs and distant galaxies

High mass SF

* Initial condition
\triangleleft Need high Jeans mass (effective a~10km/s)
- Monolithic collapse? (McKee and Tan 2002)
- Competitive mass accretion? (Bonnel et al. 2010)
* Origin of IMF
\star Effect of the total mass of the cloud?
\& Origin of isolated high mass star: 20\%?(Gies 1987)
* Rapid destructive process
\& Information on natal clouds dissipates very fast.

Galactic plane surveys

* Sites of high-mass star formation in the Galaxy.
* CO, ${ }^{13} \mathrm{CO}, \mathrm{C}^{18} \mathrm{O}, \mathrm{J}=1-0$: Mass tracers
* J=2-1, 3-2 lines: Density, temperature dependent
* Angular resolution: 3 arcmin
\star NANTEN2 $4 \mathrm{~m}:{ }^{12} \mathrm{CO}(1-0),{ }^{13} \mathrm{CO}(1-0)$, Entire Southern Sky
\star Osaka 1.85 m at NRO: ${ }^{12} \mathrm{CO}(2-1),{ }^{13} \mathrm{CO}(2-1), \mathrm{C}^{18} \mathrm{O}(2-1)$, Northern sky
* Angular resolution: better than ~1’
\& FCRAO $14 \mathrm{~m}:{ }^{13} \mathrm{CO}(1-0), 55.7^{\circ}>\mathrm{L}>18^{\circ},|\mathrm{b}|<1^{\circ}$
\& Mopra 22m: ${ }^{12} \mathrm{CO}(1-0),{ }^{13} \mathrm{CO}(1-0), \mathrm{C}^{18} \mathrm{O}(1-0), 358^{\circ}>\mathrm{L}>300^{\circ},|\mathrm{b}|<0.5^{\circ}$
\& JCMT 15m: ${ }^{12} \mathrm{CO}(3-2),{ }^{13} \mathrm{CO}(3-2), \mathrm{C}^{18} \mathrm{O}(3-2), 43^{\circ}>\mathrm{L}>28^{\circ},|\mathrm{b}|<0.5^{\circ}$
\Leftrightarrow NRO $45 \mathrm{~m}:{ }^{12} \mathrm{CO}(1-0),{ }^{13} \mathrm{CO}(1-0), \mathrm{C}^{18} \mathrm{O}(1-0), 50^{\circ}>\mathrm{L}>10^{\circ}, 236^{\circ}>\mathrm{L}>198^{\circ}$, $|\mathrm{b}|<1^{\circ}$

$\mathrm{l}=198$
 NRO Galactic Plane Survey

- Using multi-beam receiver FQRassi', OJF mapping of the Galactic plane in ${ }^{12} \mathrm{CO}(1-0),{ }^{13} \mathrm{CO},(1-0), \mathrm{C}_{18}^{18} \mathrm{O}(1-0)$, sissulicaneously

Mapping area: inner disk: $I=10^{\circ} \sim 50^{\circ} \quad|b| \leq 1^{\circ}$

Spiral arms, interarm, bar/barend, outer disk: $\left|=198^{\circ} \sim 236^{\circ}\right| \mathrm{b} \mid \leqq 1^{\circ}$

Comparison with inner disk

$$
\mathrm{I}=10
$$

CO three lines

風神 ${ }_{\text {Mown }}$ FOREST Unbiased Galactic plane Imaging survey with Nobeyama 45 -m telescope

Survey with <20" resolutions

* NRO (J=1-0), IRAM (J=2-1), JCMT (J=3-2)
* Spatial resolution $\star 0.3 \mathrm{pc}$ at 3 kpc
- Can spatially resolve $\checkmark 1 \mathrm{pc}$ at 10 kpc
- Can detect dense cor
* Velocity structures of distribution
* Essential to investiga GMCs in the entire G

Interaction of clouds: Cloud-Cloud collision

* Multiple velocity components are frequently seen toward high-mass star forming regions
\diamond Dynamics of gas is a key for high-mass star formation
* Increase Jeans mass, compression of gas
* Frequency?
\star can be large
- No. of GMCs $\sim 10^{5}$ (Kwan 1979)
- Mean free time $\sim 10 \mathrm{Myr}$: one collision within its lifetime
* Small scale (dense clumps) collision

Collision or total collapse?

Peretto et al. (2013)

Need supersonic flow to form high mass stars

Massive star cluster formation by CCC

Westerlund2

NGC3603

RCW38

[DBS2003]179

- All of the known four young massive star clusters (MSC) having nebulosity are each associated with two clouds.
- The velocity separations between two clouds are typically $\mathbf{1 0 - 2 0 ~ k m} / \mathrm{s}$.
- MSC formation by CCC.
- Time scale of CCC and MSC formation can be estimated as < ~0.5 Myrs.

NGC3603 star formation is quick, in $10^{\wedge} 5 \mathrm{yrs}$

Fukui et al. 2014

Kudryavtseva et al. 2012

Figure 4. Normalized $L(t)$ for NGC 3603 YC at $\mathrm{DM}=14.1$ mag. The most probable age is 2.0 Myr. The red curve is a fitted Gaussian function.

Massive star formation by cloud-cloud collision

Habe \& Ohta (1992)

Cloud-cloud collision (CCC) can induce strong compression of the gas, leading high-mass star formation.

${ }^{*}{ }^{*}$ sTheoretical work:

- CCC can increase mass accretion rate by more than 100 times than that in the low-mass star formation
\rightarrow leading formation of massive filament/clump/core.

$$
\begin{aligned}
& \dot{M} \sim \frac{M_{\mathrm{J}, \mathrm{eff}}}{t_{f f}} \sim\left(c_{\mathrm{s}}^{3}+c_{\mathrm{A}}^{3}+\Delta v^{3}\right) / G \quad\left(c_{\mathrm{s}}^{3}: c_{\mathrm{A}}^{3}: \Delta v^{3}=1: \underline{125: 90}\right) \\
& \dot{M}=5 \times 10^{-4}-4 \times 10^{-3} \quad M_{\mathrm{Sun}} / \mathrm{yr}
\end{aligned}
$$

Sites of the massive star formation by CCC

- Orion Nebula (Fukui+2018a)
- The GMC can be separated into two velocity components.
- Colliding higher-density cloud makes a hole in lower-density cloud.
- M42 and M43 could be formed by CCC.

Sites of the massive star formation by CCC

- PASJ Special Issue : CCC (May 2018)
- Single 0 star formation
- Spitzer bubbles (RCW79, N35, etc.)
- UCHII region (RCW166: Ohama+18b)

- Galactic mini-starbursts
- NGC6334+NGC6357 (Fukui+18b)
- High-mass star cluster formation
- M17 (Nishimura+18), W33 (Kohno+18)
- Vela region (Sano+18, Hayashi+18, Enokiya+18)

Initial condition for Massive SF

* Collision/Interaction process can be one of the main cause of massive stars
* Line observations are important
* Severe contamination in the Galactic plane
\star Large errors in distance determination
* Extragalactic observations
\star Less contamination, same distances in a galaxy
* Distribution of extended emission
\star ALMA + ACA (Morita array)

ALMA

W43@5.5kpc

Magellanic Clouds

> D~ 50 kpc (one of the nearest)
> Different environment from the MW.
, High gas-dust ratio
> Low metallicity

- Active star formation
, Massive star formation
> Young populous clusters

The Large Magellanic Cloud
\% : : . . .

(9) ROE/AAO

The Small Magellanic Cloud

Large scale observations

Spitzer survey of the LMC SAGE: Surveying the Agency of the galaxy's evolution (Meixner et al. 2006)

GMCs, dust, YSOs, HII regions, SNRs, AGBs,,...
+AKARI Herschel Ha, HI,

NANTEN CO: from 1.2 Kkm/s $1.2 \mathrm{Kkm} / \mathrm{s}$ intervals 2.7'=40pc resolution (Fukui et al. 2008)

N159

* One of thé Mass: 10 Mo Size: 220 pc - Has strongest co emission
* Activế star formẵtion
- Five yourg clusters. age ≤ 10 (Bica et al. 1996)
2.7arcmin $=40 p^{\mathrm{q}^{\mathrm{h}} \mathrm{com}^{\mathrm{m}}} \quad 5^{5_{4}^{\mathrm{h}}}$

N159: Most active on-going star formation in the Local Group: Resolving filaments and cloud cores in the LMC

Fukui [PI] Yamamoto Ohama Onishi Kawamura Minamidani Inbedetouw Madden
Galametz Lebouteiller N.Mizuno R.Chen Seale Sewio Meixner

Contour: ASTE 12CO(3-2), 22" $=5 \mathrm{pc}$

Saigo et al. 2017

$$
{ }^{40.0^{\circ}} \mid \cdot \operatorname{beam}(\sim 0.3 \mathrm{pc})
$$

ASTE (5 pc), Minamidani et al. 2008

Massive star formation by cloud-cloud collisions

after hit

3-D MHD simulation with self-gravity of colliding clouds Inoue \& Fukui 2013

Large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer

Inoue \& Fukui 2013

45.00s

N159 East Papillon

Black Contour: 12CO(2-1)
White Contour: 98GHz Continuum
(free-free)

White Contour: 12CO(2-1)
Yellow dashed Contour: 231 GHz Continuum (thermal)

Magenta Contour: H3O α

Three velocity components?

Blue: $228 \mathrm{~km} / \mathrm{s}-232 \mathrm{~km} / \mathrm{s}$
Green: $232 \mathrm{~km} / \mathrm{s}-334 \mathrm{~km} / \mathrm{s}$
Red: $235 \mathrm{~km} / \mathrm{s}-240 \mathrm{~km} / \mathrm{s}$

Filaments are merging at Papillon
CO gas is rapidly dissociated by the high-mass star
Similar, but more complex velocity structure compared with the N159W filaments

ALMA observations N159W/E in the LMC

* Full of Filaments and Arcs
* Complex velocity structures
* Molecular outflows
$»$ Dust continuum/Radio Recombination Lines
* Some filaments are colliding/merging
* Leading to rapid highmass star formation

Nishimura et al. (2015)

Moment $0 \operatorname{map}\left({ }^{12} \mathrm{CO}(J=2-1)\right)$

Moment $0 \operatorname{map}\left({ }^{13} \mathrm{CO}(J=2-1)\right)$

Moment 1 map ($\left.{ }^{12} \mathrm{CO}(J=2-1)\right)$

${ }^{13} \mathrm{CO}(J=2-1)$

Osaka 1.85-m (~3')

W43 (Carlhoff+2013)

IRAM 30-m (~11")

ALMA Cycle1(~1")

Column Density ※ Derived from 13co(2-1)

GMCs in the Galaxy and LMC

* Massive star forming regions: >30Mo, 10^{5} Lo
* Similar shapes
\star Filaments + Multiple velocity components
* Filament-filament interaction?
* Different column density
\star GMCs in the LMC have higher $\mathrm{N}(\mathrm{H} 2)$
\star More active star formation in the LMC??

GMCs in the LMC

* Clouds in super star cluster: 30Dor
* R. Indebetouw et al. (2013), O. Nayak et al. (2016)
* N159
« Fukui et al. (2015), Saigo et al. (2017), Nayak et al. (2018)
* GMCs with different evolutionary stages
\& PI: A. Kawamura, R. Chen, T. Wong, S. Zahorecz
* Developed HII regions: N55
\& N. Naslim et al. (2018)
* Cold GMC at the edge of the LMC
* T. Wong et al. (2017)
* High mass star formation in an isolated environment
* PI: R. Harada
* Complex Organic Molecules
* M. Sewiło et al. (2018)

GMCs in the LMC

- "Starless" GMCs
- Clumpy + filamentary
- GMCs with high-mass star formation
- Compact clump + highly filamentary clouds
- Similar to the Galaxy
- Higher Column density?
- Scaling relations, Mass spectra
- Similar to those in the Galaxy except for 30Dor???

Why filamentary clouds?

To understand roles of filaments in SF are quite important!
(e.g., Inutsuka \& Miyama 1997, Arzoumanian et al. 2010, André et al. 2014) Spatially resolved observations (<0.1 pc) of filaments in (galactic) massive star-forming regions are rare so far...

Resolution $=8 \prime$ ($\sim 0.07 \mathrm{pc})$, Width $\sim 0.15 \mathrm{pc}$, Line mass $\sim 500-2000 \mathrm{M}_{\odot} / \mathrm{pc}$
Possible formation mechanisms of massive filaments :

- Recent large-scale compression
- Dynamically supported by accretion driven MHD waves
(André et al. 2016)

Chemistry in Magellanic Clouds

N113 in the LMC
methanol, dimethyl ether, and methyl formate Sewilo et al. (2018)

IRAS 01042-7215 in the SMC Detection of Methanol
Shimonishi et al. (2018)

N83 in the SMC

Figure 1: Contour: $\mathrm{CO}(1-0)$ intensity distribution toward the SMC (Mizuno et al. 2001). Color: Spitzer S3MC (Bolatto et al. 2007). The white arrows indicate the clouds observed by ASTE in the lines of $\mathrm{CO}(3-2)$.

NANTEN CO

Red contour : ASTE 12CO(J=3-2)

Glover \& Clark 2012

N83C in the SMC

Density: $10^{4} \mathrm{~cm}^{-3}$
T_{k} : $30-50 \mathrm{~K}$
Less filamentary structure

Metalicity High

MW (1) LMC (1/2)
SMC(1/5)

Less filamentary structure in the SMC?

SMC: ALMA observations

- Clumps are starting to be spatially resolved
- R ~ 1pc, M ~ 1000Mo
- X Factor from Virial analysis
- Consistent with the metallicity
- Density of 12CO clump
- a few $\times 10^{4} \mathrm{~cm}^{-3}$
- a few $\times 10^{3} \mathrm{~cm}^{-3}$: MW and LMC
- $\mathrm{T}_{\text {kin }} \gtrsim 40 \mathrm{~K}$
- CO heavily dissociated?
- [CI] observations: Honma et al.

Summary

- LMC
- Filaments + Multiple velocity components
- Filament-filament interaction
- Formation of high-mass stars (>30Mo)
- Higher column density than MW clouds?
- More active star formation in the LMC
- Populous cluster forming clump?
- SMC
- Clumps are starting to be spatially resolved
- X Factor $\sim 4 \times$ Galactic value
- 12CO clump: high-density, high-temperature
- No significant filaments?

High mass SF in GMC

* Resolved CO observations toward GMCs
\star from nearby GMCs to GMCs in the LMC
- from small telescopes to ALMA
\star a lot of samples with resolutions of $<\sim 0.1$ pc
- along the galactic plane and in the Magellanic Clouds
* Dynamical interaction of the gas is a key to understand the high mass star formation.

