The Cosmic Cycle of Dust and Gas in the Galaxy: From Old to Young Stars, July 9-13, 2018 @ Quy Nhon, Vietnam

Gas and Dust in Protoplanetary Disk: their connection to materials in our Solar System

Hideko Nomura (Tokyo Tech.)

Contents

- Introduction

- Complex Organic Molecules in Disks

- Effect of C/O Ration in Gas in Disks Wei, HN, Lee, Ip, Walsh & Millar in prep.

Introduction

Gas & Dust Observations in PPDs 0.5秒角=70天文単位 TW Hya

SAO206462 (Muto + 2012)

> Subaru 密度波理論による波形

HD142527

(Fukagawa+ 2013) (Tsukagoshi+ 2016)

(Oberg et al. 2015) (ALMA partnership + 2015) (Qi et al. 2013) IM Lup DCO+ 3-2 HL Tau N_2H^+ 4-3 TW Hya

Revealing physical & chemical structure of planet-forming regions

From Molecular Clouds to Planetary Systems

Molecular Cloud Cores, ~10⁶yr

1987 1998, after Shu et al. Hogenheilde

From Protoplanetary Disks to Planetary Systems

· Grain growth, settling, radial drift

(Tsukagoshi et al. 2016)

Dust in Gap Opened by a Planet

Complex Organic Molecules in Disks

Observed Interstellar Molecules

CH+	HCN	H2CO	HC3N	СНЗОН	HC5N		НСООСН3	HC7N
CS	HNC	H2CS	нсоон	CH3CN	СНЗССН		CH3C3N	HC9N
СО	НСО	H2CN	CH2NH	CH3NC	CH3NH2		СНЗСООН	HC11N
CN	OCS	HNCO	CH2CO	СНЗЅН	СНЗСНО		СН2СНСНО	C2H5CN
C2	CH2	HNCS	NH2CN	NH2CHO	CH2CHCN		СН2ОНСНО	СНЗС4Н
Amino acids in comet							H2C6	CH3C5N
								СНЗОСНЗ
CHOH								С2Н5ОН
ROSETTA (Altwegg et al. 2016)								CH3CONH2
Amino acids in meteorites								СН3СОСН3
Ø relation with								ОНСН2СН2ОН
								С2Н5ОСНО
interstellar molecules ?								
HCNH+ C4H-								
C3N-								
$1970 \longrightarrow 1980 \longrightarrow 1995 \longrightarrow 2018$								
~10 species ~50 \sim 100 \sim 210 species								

Obs. of Gas in Protoplanetary Disks

- UV H₂ Lyman-Werner band transitions
- Optical [OI] 6300A
 - NIR $H_2 v=1-0 S(1), S(0),$ $CO <math>\Delta v=2, \Delta v=1,$
- H_2O , OH, HCN, C_2H_2 , CH_4 MIR

 $H_2 v=0-0 S(1), S(2), S(4)$

H₂O, OH, HCN, C₂H₂, CO₂, etc. (Spitzer Space Telescope)

FIR [OI] 63um, 145um, CO, H₂O, CH⁺, HD, NH₃, etc. (Herschel Space Observatory)

(sub)mm

CO, ¹³CO, C¹⁸O, C¹⁷O, ¹³C¹⁸O, HCO⁺, H¹³CO⁺, DCO⁺, [CI], C₂H, C-C₃H₂, H₂CO, CH₃OH, HCN, H¹³CN, DCN, HC¹⁵N, HNC, CN, N₂H⁺, N₂D⁺, HNC, CN, N₂H⁺, N₂D⁺, HC₃N, CH₃CN, CS, C³⁴S, SO etc.

→more complex mol. will be found by ALMA

Modeling Complex Molecules in PPD

First detection of CH₃OH from protoplanetary disk!

Abundances of relatively small molecules are consistent, but we need more complete model especially for larger molecules

Model Spectra of More COMs in Disks

Searching more COMs in disks by ALMA! (Walsh et al. 2017)

Effect of C/O Ratio in Gas in Disks

Carbon Depletion in Inner Solar System

Carbon grains must be destroyed and carbon bearing species in gas escape from the Solar Nebular

Effect of carbon grain destruction

physical model + chemical reactions + line radiative transfer

C/O < 1 in gas

C/O > 1 in gas

H¹³CN intensity map is affected at R<20AU → testable by ALMA observations? Herbig Ae disk (Wei, HN et al. in prep.)

Summary

Observation & modelling of organic molecules in protoplanetary disks by ALMA

- Detection of HC₃N, CH₃CN, CH₃OH from disks

- Observed CH₃OH could be formed via grain surface reactions and non-thermally desorbed into gas
- CH_3OH/H_2O ratio consistent with that in comets
- Further investigation is needed for connection to Solar System objects

Effect of C/O ratio in gas on disk chemistry

 Carbon grain destruction leads to enhancement of carbon-bearing species, such as HCN and carbonchain molecules → testable by ALMA observations, effect on Solar System objects?

