MODELLING DUST EVOLUTION WITH THEMIS Dust properties from diffuse to dense ISM

N. Ysard¹, A. Jones¹, and M. Köhler in collaboration with many people:

A. Abergel¹, M. Bocchio, T. Boutéraon¹, E. Dartois², K. Demyk³, L. Fanciullo⁴, M. Godard⁵, V. Guillet¹, E. Habart¹, E. Micelotta⁶, M.-A. Miville-Deschênes⁷, T. Pino², T. Schirmer¹, L.Verstraete¹

¹ IAS, Université Paris Sud, France
² ISMO, Université Paris Sud, France
³ IRAP, Université Paul Sabatier, France
⁴ IAA, Academia Sinca, Taïwan
⁵ CSNSM, Université Paris Sud, France
⁶ Department of Physics, University of Helsinki, Finland
⁷ AIM, CEA, France

Outline

Observed variations in dust properties

Diffuse ISM Dense ISM

The Heterogeneous dust Evolution Model for Interstellar Solids

Dust components A core/mantle dust model

THEMIS: comparison with observations

Diffuse ISM Dense ISM

emission + scattering

Observed variations in dust properties

Diffuse ISM observations

All-diffuse-sky variations in the dust opacity Planck Collaboration XI (2014): $N_{H} < 3 \times 10^{20}$ H/cm²

IRAS - 100 μm Planck-HFI - 350 μm - 550 μm - 850 μm

• Comparison with extinction E(B-V) = $A_{_{B}} - A_{_{V}}$

Diffuse ISM observations

All-diffuse-sky variations in the dust opacity Planck Collaboration XI (2014): $N_{\mu} < 3 \times 10^{20}$ H/cm²

Diffuse ISM observations

All-diffuse-sky variations in the dust opacity Planck Collaboration XI (2014): $N_{H} < 3 \times 10^{20}$ H/cm²

- N_H < 3×10²⁰ H/cm²
- E(B-V) from SDSS data towards quasars
- Observational results
 - $\rightarrow \beta$ -T variations
 - \rightarrow luminosity independent of T
 - \rightarrow hotter grains = less emissive grains

- Recent studies about variations in the DISM
 - → Reach et al. (2015, 2017)
 - \rightarrow Murray et al. (2018)
 - → Nguyen et al. (2018)
- Possible explanations
 - \rightarrow gas-to-dust mass ratio
 - \rightarrow C depletion in grains
 - \rightarrow dust properties

dust evolves in the diffuse ISM

Dense ISM observations

Far-IR/submm opacity increase & temperature decrease & (β, T) relation Rémy et al. (2017, 2018): 6 nearby anti-centre clouds

- Observations towards Cetus, Taurus, Perseus and California regions
- Usual behaviour of dense clouds

 $T_{dust} \sim \tau_{submm/FIR}$ and $\beta \checkmark$

 Gradual evolution across all phases significant in DNM stronger in CO

Dense ISM observations

Far-IR/submm opacity increase & temperature decrease & (β, T) relation Rémy et al. (2017, 2018): 6 nearby anti-centre clouds

- Observations towards Cetus, Taurus, Perseus and California regions
- Usual behaviour of dense clouds

 $T_{dust} \sim \tau_{submm/FIR}$ and $\beta \checkmark$

 Gradual evolution across all phases significant in DNM stronger in CO

→ The Heterogeneous dust Evolution Model for Interstellar Solids

What dust components are included ?

- Use optical properties based on laboratory data Dartois et al. (2004, 2005), Jena group's DDOP, Menella et al. (1995), Ordal et al. (1985, 1988), Pollack et al. (1994), Rouleau & Martin (1991), Scott & Duley (1996), Smith (1984), Zubko et al. (1996) and very soon Demyk et al. (2017)
- Size- and surface-dependent a-C(:H) optical properties
- Mg-rich amorphous silicates with metallic nano-inclusions
- Core-mantle particles CM

Dust components

a-C(:H) materials $\{a-C:H \leftrightarrow a-C\}$

Jones, Williams & Duley (1990) Micelotta et al. (2012) Jones (1990, 2012abc) Jones et al. (2013) EUV photolysis

ion irradiation

heat

increase in aromatic domain size

H atom loss from structure & smaller band gap

a-C(:H) materials { a-C:H ↔ a-C }

Amorphous silicates

- 50%-50% olivine & pyroxene normative compositions
 - \rightarrow optical properties based on lab data
- Aromatic-rich/H-poor amorphous carbon mantle around the silicate core
- Amorphous silicate annealed in the presence of carbon
 - \rightarrow reduction of Fe & formation of Fe nano-particles
 - \rightarrow FeS inclusions

Davoisne et al. (2006), Djouadi et al. (2007)

Amorphous silicates

- 50%-50% olivine & pyroxene normative composition
 - \rightarrow optical properties based on lab data
- Aromatic-rich/H-poor amorphous carbon mantle around the silicate core
- Amorphous silicate annealed in the presence of carbon
 - \rightarrow reduction of Fe & formation of Fe nano-particles
 - → FeS inclusions

Davoisne et al. (2006), Djouadi et al. (2007)

- H⁺ bombardment of amorphous silicates with Fe in the matrix
 - \rightarrow selective oxygen sputtering
 - → reduction of Fe^{2+} to metallic Fe

Jäger et al. (2016)

Core-mantle dust model \rightarrow CM

Jones et al. (2013) Köhler, Jones & Ysard (2014) Jones, Köhler, Ysard et al. (2017)

Core-mantle dust model \rightarrow CM

Core-mantle dust model \rightarrow CM

Jones et al. (2013) Köhler, Jones & Ysard (2014) Jones, Köhler, Ysard et al. (2016, 2017)

THEMIS → Dust evolution in the diffuse ISM

Comparison with Planck Collaboration XI (2014)

Ysard, Köhler & Jones (2015)

What do we expect to vary in the diffuse ISM ?

- Radiation field
- Grain size distribution
- Fe and FeS inclusions

- Carbon mantle thickness
- Total abundance of C in dust

Example : variations in the a-C:H/a-C mantle thickness

And varying (almost) everything

Diffuse Galactic Light

- DGL data points from Sano et al. (2015) and references therein
- Variable mantle thickness on both carbonaceous and silicate grains
- Dust property variations required to explain Planck data consistent with DGL observations

THEMIS → Dust evolution in the dense ISM

THEMIS SED variations

CMM →

THEMIS SED variations

AMMI →

← AMM

water ice

SED variations with radiative transfer effects

THEMIS + 3D radiative transfer

SED variations with radiative transfer effects

Modified blackbody fits in Planck + IRAS bands

Scattering efficiency : Q_{sca}/Q_{ext}

- In agreement with near-IR albedo and g-factor measurements Mattila (1970, 2018), Lehtinen & Mattila (1996)
- Increase in albedo mainly due to a-C:H accretion: $Q_{abs} \rightarrow$ while $Q_{sca} \checkmark$

Jones, Köhler & Ysard (2016)

Near-IR scattering: cloudshine

Dense filament in Taurus : Malinen et al. (2013)

- → WFCAM camera on UKIRT hear-IR photometric bands J, H, K
- → Herschel PACS + SPIRE data model cloud with ρ_c = 10⁴ H/cm³, p = 3, and A_v^{ext} = 1.5

Malinen's data

Ysard, Köhler & Jones (2016)

• Dust evolution as a function of local conditions seems to be the key

• What can THEMIS explain ?

- → dust SED and its variations in the diffuse ISM
- → diffuse galactic light peak position and width
- → general shape and variation trends of the extinction curve
- → variations in carbon depletion
- → temperature decrease and opacity increase in dense clouds
- \rightarrow β -T variations from diffuse ISM to moderately dense clouds
- cloud/coreshine from the visible to mid-IR

Current work on THEMIS

- \rightarrow new silicate lab data from Demyk et al. (2017)
- → non-spherical grains for polarisation
- → complex aggregates/huge grains (Ysard et al. 2018 + Köhler et al. in prep)
- → near-IR bands in protoplanetary disks (Boutéraon et al. to be subm.)

• How to use THEMIS ?

- everything about THEMIS https://www.ias.u-psud.fr/themis/
- run your own calculations with DustEM https://www.ias.u-psud.fr/DUSTEM/

