The ISM phases: an observational perspective

recent highlights and open questions

Snežana Stanimirović (UW Madison)

with thanks to: Dan McCammon, Matt Haffner, Brian Babler, Blair Savage

and apologies for not being able to cover <u>all</u> exciting work

1

(g) O VIII

Galactic Diffuse X-ray Emission

weak + includes:

- Solar Wind Charge Exchange
- Local Hot Bubble
- Possibly faint stars (Mitsuishi & Sato 2013)
- Disk component
- Galactic Halo

4

Existence of ~10⁶ K gas within Galactic disk? Local Hot Bubble is really hot!

Liu+17: R2/R1 \rightarrow ~10⁶ K gas inside The Local Bubble

Galeazzi+14: Charge exchange contribution to ROSAT 40% \rightarrow hot gas fills the Local Bubble

LB structure still unclear. Disk component fraction and distribution unknown.⁵

Galactic Halo

Widespread, smooth X-ray emission indicative of the ubiquitous Halo. Li & Bregman I7: modeling of X-ray emission based on 648 OVII and OVIII emission lines \rightarrow vertical scale height ~1.3 kpc a M~3x10¹⁰ Msun, <n>~5x10⁻⁵ cm⁻³ (Faerman+17)

Some X-ray shadow observations (best way to constrain foregrounds) do not support a global Halo. **Patchy Halo?** Very limited sample of shadow measurements.

Still know very little due to weak X-ray emission and massive foregrounds (Local Bubble and Solar Wind charge 6 exchange)!

Transition gas ~10⁵-10⁶ K: HIM to WIM via OVI + SiIV, CIV, AIIII

~140 HST and FUSE observations

Origin: Hot to warm conductive interfaces or cooling of Hot gas.

Most species show significant patchiness, up to 87% for HIM (Savage & Wakker 2009). AI III traces WIM, SiIV and CIV trace both photoionized and transition gas, OVI traces collisionally ionized transition gas.

WIM with <u>W</u>isconsin <u>H</u>-<u>A</u>lpha <u>Mapper</u> (WHAM): $\Delta S = 0.1 \text{ R} (\Delta EM \sim 0.2 \text{ cm}^{-6} \text{ pc}), \Delta v = 12 \text{ km/s}, FWHM = 1^{\circ}$

Thanks to Matt Haffner

WIM Properties:

- [N II]/H α and [S II]/H α increase with decreasing I_{H α} due to changes in T_e (Haffner et al. 1999).
- Te~8000-12,000 K, hotter than HII regions
- Significant variations: Higher T_e at lower n_e and higher |z| - not understood
- $n_e \sim 0.03 0.08 \text{ cm}^{-3}$
- H⁺/H~0.9
- 90% of H+ is in WIM
- Origin: Requires 1 x 10⁻⁴ erg s⁻¹ cm⁻² to sustain the 5 x 10⁶ s⁻¹ cm⁻² recombination rate.

\rightarrow ionizing radiation from O stars via leaky HII regions

Anderson+15: RCW120 leaking fraction ~25%

Far Carina arm much higher scale height, >1 kpc. Line ratios \rightarrow local ne enhancement via star formation more likely than scattered light from HII regions.

2.5

2

0

-0.5

1.5 **m** (I-s my X) [®] M Gol

Planck Collab. 2014

Dame+01 + Mizuno+04

Large-scale properties of molecular gas

8107 Gaussian cloud clusters, correspond to 98% of CO emission from Dame+01. Assumed a constant X_{CO} . Surface density increases close to major spiral arms.

Inner vs Outer Galaxy

- What drives differences btw Inner/outer MW?
- More massive clouds and higher P_{int} in the inner Galaxy.
- Change in X_{CO} somewhat responsible but can not explain all variations.
- Reduced temperature and metallicity Narayanan+12
- 15% of clouds bound (40% of mass) Many unbound structures esp in Outer Galaxy

Bound vs unbound molecular clouds?

з

 $\log M_{co} (M_{Sun})$

 $\alpha \sim 1$ for gravitationally bound Key to understanding low star formation efficiency

8.0

The role of diffuse molecular gas?

- A significant fraction of CO in diffuse, unbound, non-starforming gas.
- 10-20% at R = 3 kpc, 50% at R = 15 kpc (Roman-Duval+16, Liszt+10, Goldmisth+08).
- Diffuse CO has higher scale height and originates in a thick disk.

Neutral gas: key HI emission surveys

Thanks to Sam Szotkowski

21

GALFA-HI DR2: 13,000 deg² at 4'

90% of data obtained commensally

Courtesy Josh Peek²

22

All-sky HI

LAB at 36'

HI4PI (Effelsberg + Parkes) at 9'-16'

 $< v > \ [{\rm km\,s^{-1}}]$ -70 70

Vertical motion Vz of stars: upper MS and giants from Gaia (Poggio+18)

Need distance information – GAIA and other stellar surveys: <u>a</u> <u>lot more to come about</u> <u>the vertical structure of</u> <u>the Milky Way disk!</u> Connecting stellar and gaseous disk structure.

HI: CNM, WNM, and feedback-driven unstable neutral medium

Morphology of the CNM?

Small-scale (~few ') HI filaments; Peek+18 RHT

HI fibers

Soler+17: magnetic field important for diffuse flows that lead to formation of molecular clouds. More understanding needed.

Observed HI temperature distribution

Key HI absorption surveys

Interferometric (CGPA, VGPS, SGPS, GASKAP): large samples but low sensitivity. Kanekar, Braun & Roy (2011) and 21-SPONGE (SS+): the most sensitive.

Excitation or spin temperature, Ts, of the CNM:

No evidence for spatial variations of Ts

E.g. <Ts>: (Inner MW) ~ (Outer MW) !

(VLA + Canadian + Southern) Galactic

	Inner Galaxy	Outer Galaxy
<ts></ts>	48 +/- 10 K	38 +/- 10 K
# per kpc	0.03-1	0.02-0.08
		31

Puzzle: the CNM fraction ~constant across the MW disk

Indirect WNM temperature

	Unstable HI mass fraction
Heiles & Troland03	0.3
Haud & Kalberla07	~0.5
Roy+13	<0.28

Dickey+77, Kalberla+85, etc

Direct WNM temperature difficult & rare

- 48 continuum sources, S >3 Jy, high latitudes
- 571 VLA hours: σ_{τ} < 0.001 per 0.4 km/s channels
- 57 HI spectra as some double sources
- Matching HI emission from Arecibo
- High detection rate (52/57)!
- Claire Murray's PhD thesis

Murray et al. 2015, 2018

34

Understanding Observational Biases: compare with numerical_simulations

- 3D hydrodynamical Galactic ISM simulation:
 - Supernova feedback
 - Self gravity
 - ISM heating, cooling
 - 2pc spatial resolution
 - Galactic rotation
- 10⁴ synthetic HI spectra ~15,000 components
- From T_k to T_s :

Collisions, radiative excitation, scattering of Lyalpha photons (Wouthuysen-Field effect) Assume n_alpha=10⁻⁶ cm⁻³

Accuracy of observational Ts derivation

Issues at low-b: line blending and many components Ts: generally good agreement, but for Ts>400K AGD overestimates temp. 36

Thermally-unstable WNM

Have sensitivity to detect Ts <4000K yet very few detections

Thermally unstable HI fraction under debate

Astronomy & Astrophysics manuscript no. aa33146-18 June 12, 2018 ©ESO 2018

Properties of cold and warm HI gas phases derived from a Gaussian decomposition of HI4PI data

P. M. W. Kalberla & U. Haud: Distribution of cold and warm HI gas

How warm is the WNM?

Stacking analysis of 19 HI absorption spectra

Peak τ = 3x10⁻⁴ FWHM ~50 km/s Ts ~7200 (+ 1800 – 1200) K N(HI)~2x10²⁰ cm⁻²

> Murray+14: 5σ statistical detection Also Murray+18

Are HI phases different close to GMCs?

- ~30 HI absorption lines in the vicinity of Perseus
- CNM clouds in/around GMCs typical.
- Higher CNM fraction than in a random ISM field
- \rightarrow Buildup of cold HI that goes to make H₂
- 50% WNM → lots of warm gas! Extended HI envelopes or turbulent mixing.
- 10% mass increase when cold HI included (SS, Murray, Lee+14; Lee+15)

