

Emergence of Molecular Complexity in

Solar-Type Star Forming Regions

B. Lefloch

Institute of Planetology and Astrophysics of Grenoble (France)

Molecular Complexity in the ISM

2	3	4	5	6	7	8	9	10	11	12	13
H_2	C ₃	c-C ₃ H	C ₅	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH_3C_4H	CH ₃ C ₅ N	HC ₉ N	C_6H_6	c-C ₆ H ₅ CN
AĨF	C ₂ H	l-C ₃ H	C₄H	$l-H_2C_4$	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	C ₂ H ₅ OCH ₃	0.5
AlCl	$\tilde{C_{2}O}$	$C_3 N$	C₄Si	$C_2 \tilde{H}_4$	CH ₃ C ₂ H	CH ₃ COOH?	$(CH_3)_2O$	(CH ₂ OH) ₂	C ₂ H ₅ OCHO	i-C ₃ H ₇ CN	
C2	$\tilde{C_2S}$	C ₃ 0	l-C ₃ H ₂	CH ₃ CN	HC ₅ N	C ₇ H	CH ₂ CH ₂ OH	CH ₃ CH ₂ CHO	CH ₃ OCOCH ₃	n-C ₃ H ₇ CN	
CH	CH ₂	C_3S	$c-C_{3}H_{2}$	CH ₃ NC	CH ₃ CHO	$C_{6}H_{2}$	HC ₇ N ²	CH ₃ CHCH ₂ O)	5 1	+ C ₆₀ , C ₇₀
CH^+	HCN	C ₂ H ₂	CH ₂ CN	CH ₂ OH	CH ₂ NH ₂	CHJOHCHO	C _o H	CH ₂ OCH ₂ OH	[
CN	HCO	NH ₂	CH_{4}	CH ₂ SH	c-C ₂ H ₄ O	l-HC₄H	CH ₂ CONH ₂	5 2			
CO	HCO^+	HCCN	HC ₃ N	HC ₃ NH ⁺	CH ₂ CHOH	СН,СНСНО	C _s H ⁻				<u> </u>
CO^+	HCS^+	HCNH ⁺	HC ₂ NC	HC ₂ CHO	$C_{\epsilon}H^{-}$	CH ₂ CCHCN	$C_{3}H_{6}$	<u>0</u> 40			-
CP	HOC^+	HNCO	HCOOH	NH ₂ CHO	0	NH ₂ CH ₂ CN	5 0	scu			-
CSi	H ₂ O	HNCS	H ₂ CNH	$C_5 N^2$		CH ₃ CHNH		- 30 -			-
HCl	H ₂ S	HOCO ⁺	H ₂ C ₂ O	l-HC₄H		5		ц ц			-
KCl	HNC	H ₂ CO	H ₂ NCN	l-HC₄N				ö 20 -			-
NH	HNO	H ₂ CN	HNC ₃	$c-H_2C_3O$				led 10	-	_	-
NO	MgCN	H_2CS	SiH4	H ₂ CCNH				E 10			-
NS	MgNC	$H_{3}O^{+}$	H_2COH^+	$\bar{C_5}N^-$				ź o			
NaCl	N_2H^+	c-SiC ₃	$\bar{C_4}H^-$	HNCHCN	1				2 5	10	13 >13
OH	N_2O	CH ₃	HCOCN						Number o	of constituen	t atoms
PN	NaCN	C ₃ N ⁻	HNCNH						(http://	(www.odmc.do/)	
SO	OCS	PH_3	CH ₃ O						(mp.//	www.cums.ue/,	1
SO^+	SO_2	HCNO	NH_4^+	Arc	1100	molecule	s discover	ed mainly	in massiv	e star-foi	rming regions
SiN	c-SiC2	HOCN	H_2NCO^+) intorecure		ee manny	1100		
SiO	CO_2	C_3H^+		(Sg	rB2, Ori	on), evolv	ed stars, d	lark clouds	s, diffuse r	nedium.	
SiS	NH ₂	HMgN0	5								
CS	H_3^+	HSCN									
HF	SiCN			Co	mplex O	rganic M	lolecules :	\geq 6 atoms	+ C atom	S (Herbst &	van Dishoeck, 2009)
HD	AINC			Or	a third of	f data ata d			~	,	
FeO?	SiNC			On	e unira ol	detected	molecules	are COM	S .		
O_2	CCP										
CF^+	AlOH				D • 1	60	• • • •				r
SiH	H_2O^+			Th	e Bricks	of Organ	ic Chemis	stry are d	etected in	the ISN	l
PO	H_2Cl^+										
AlO,	KCN					_					
OH⁺,	FeCN			Pre	e-biotic r	nolecules	(HCOCE	I,OH, NH	,CHO,) but no	amino acid !
CN-	HO_2							_	_		

Key Questions

COMs and Prebiotic chemistry around Sun-like Protostars: What evidence ? A handful of hot corino sources are known: how well ? IRAS16293-2422: TIMASS (Caux et al. 2011), PILS (Jorgensen et al. 2016)

How and when do Complex Organic Molecules form around Sun-like systems ?

Which heritage to (exo)planetary systems ?

What is the ultimate molecular complexity that can be reached in SFRs ? → Origin of cometary material ? Amino-acids ?

(Lefloch, Bachiller et al. 2018)

Goals:

- Evolutionary view on chemistry along Solar-type Star Formation:
- Influence of environmental conditions: feedback processes

Unbiased, high sensitivity spectral line surveys from 70 to 280GHz

ASAI Source Sample: 10 templates illustrative of the different chemical stages of a sun-like protostar

ASAI	1 1 1	

Sources	Coordinates (J2000)	d (pc)	Lum. (L_{\odot})	3 mm (mK)	2 mm (mK)	1.3 mm (mK)	$\frac{\delta u}{(m kHz)}$	Comment
TMC1	$04^{h}41^{m}41.90^{s} + 25^{\circ}41'27.1''$	140	_	_	4.2 - 4.2	_	48.8, 195.3	Early prestellar core
L1544	$05^{h}04^{m}17.21^{s} + 25^{\circ}10'42.8''$	140	_	2.1 - 7.0	_	_	48.8	Evolved prestellar core
B1b	$03^h 33^m 20.80^s + 31^{\circ} 07' 34.0''$	230	0.77	2.5 - 10.6(*)	4.4 - 8.0	4.2 - 4.6	195.3	First Hydrostatic Core
L1527	$04^h 39^m 53.89^s + 26^{\circ} 03' 11.0''$	140	2.75	2.1-6.7(*)	4.2 - 7.1	4.6 - 4.1	195.3	Class 0 WCCC
IRAS4A	$03^{h}29^{m}10.42^{s} + 31^{\circ}13'32.2''$	260	9.1	2.5 - 3.4	5.0 - 6.1	4.6 - 3.9	195.3	Class 0 Hot Corino
L1157mm	$20^{h}39^{m}06.30^{s} + 68^{\circ}02'15.8''$	250	3	3.0 - 4.7	5.0 - 6.5	3.8 - 3.5	195.3	Class 0
SVS13A	$03^{h}29^{m}03.73^{s} + 31^{\circ}16'03.8''$	260	34	2.0 - 4.8	4.2 - 5.1	4.6 - 4.3	195.3	Class I
AB Aur (†)	$04^{h}55^{m}45.84^{s} + 30^{\circ}33'33.04''$	145	_	4.6 - 4.3	4.8 - 3.9	2.1 - 4.3	195.3	protoplanetary disk
L1157-B1	$20^{h}39^{m}10.20^{s} + 68^{\circ}01'10.5''$	250	_	1.1 - 2.9	4.6 - 7.2	2.1 - 4.2	195.3	Outflow shock spot
L1448-R2	$03^h 25^m 40.14^s + 30^{\circ} 43' 31.0''$	235	-	2.8 - 4.9	6.0 - 9.7	2.9 - 4.9	195.3	Outflow shock spot

3mm band: chemical content

After analysing the 3mm line surveys (1% U lines)

2		3	4	5	6	7	8	9	10	11	12	13
ŀ	\mathbf{I}_2	C ₃	c-C ₃ H	C ₅	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH_3C_4H	CH_3C_5N	HC ₉ N	C_6H_6	c-C ₆ H ₅ CN
A	١F	C ₂ H	l-C ₃ H	C ₄ H	I-H ₂ C ₄	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	$(CH_3)_2CO$	CH ₃ C ₆ H	$C_2H_5OCH_3$	
A	AICI	C_2O	C ₃ N	C ₄ Si	C_2H_4	CH ₃ C ₂ H	CH ₃ COOH?	(CH ₃) ₂ O	$(CH_2OH)_2$	C ₂ H ₅ OCHO	i-C ₃ H ₇ CN	
C	22	C_2S	C ₃ O	$l-C_3H_2$	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO	CH ₃ OCOCH ₃	n-C ₃ H ₇ CN	
(CH	CH ₂	C_3S	c-C ₃ H ₂	CH ₃ NC	CH ₃ CHO	C_6H_2	HC ₇ N	CH ₃ CHCH ₂ O			
(CH⁺	HCN	C_2H_2	CH ₂ CN	CH ₃ OH	CH_3NH_2	CH ₂ OHCHO	C ₈ H	CH ₃ OCH ₂ OH			
(CN .	HCO	NH ₃	CH_4	CH ₃ SH	$c-C_2H_4O$	I-HC ₆ H	CH_3CONH_2				
		HCO ⁺	HCCN	HC ₃ N	HC ₃ NH ⁺	CH ₂ CHOH	CH ₂ CHCHO	C ₈ H ⁻				
	.U ⁻ תי		HCNH ⁺	HC ₂ NC	HC ₂ CHO	$C_6 H^2$	CH ₂ CCHCN	C_3H_6				
	P PC:	HOC	HNCO	HCOUH	NH ₂ CHO	CH ₃ NCO	NH_2CH_2CN					
L	201		HNCS	H_2 CNH	C_5N		CH ₃ CHNH	Four ma	iin chem i	ical fami	lies:	
Г к		Π_2 S	H CO	H_2C_2O	1 HC N			TT]		TT		
r N	JH	HNO	H_2CO	HNC	c-H C O			Hydroca	arbons: ($\sim_{\mathbf{X}}\mathbf{H}_{\mathbf{V}}$		
N	JO	MoCN	H ₂ CN	SiH4	H_2C_3O			O_beari	ng · C H			
	IS	MgNC	H_2O^+	H-COH+	$C_{2}N^{-}$			U-Deal I		y z		
N	JaC1	N ₂ H ⁺	c-SiC ₂	C₄H-	HNCHCN			N-beari	ng:C.H.	$\mathbf{O}_{\mathbf{N}}\mathbf{N}_{\mathbf{M}}$		
0	ΟH	N ₂ O	CH ₃	HCOCN						$y = z = z_1$		
F	PN	NaCN	$C_3 N^-$	HNCNH				S-bearin	ig : C _x H	$vO_zN_tS_{ii}$		
S	0	OCS	PH_3	CH ₃ O				1			_	
S	O +	SO ₂	HCNO	NH_4^+				aiso : Si-	bearing,	P-Dearin	Ig	
S	iN	c-SiC2	HOCN	H_2NCO^+								
S	iO	CO_2	C_3H^+									
S	SiS	NH_2	HMgNC									
(CS	H_{3}^{+}	HSCN	Firs	t S-bea	ring CO	M detect	ed in low-	mass SFI	Rs: CH ₂ S	H	
ŀ	łF	SiCN				\mathcal{C}				5		
H	- ID	AINC								(also Majum	dar et al. 20.	16)
F	FeO?	SiNC		No	eviden	ce for C	COMs larg	ger than gl	vcolaldel	nvde. dim	ethyl et	ther. ethanol
(\mathbf{D}_2	CCP					2 2	<u> </u>	<i>.</i>			
(JF⁺	AIOH		Nov	v mole	cular cna	acias NO	+ NS $+$ (c)	• 1 • 1	2014 2019)		
3	1H	H_2O^{+}		INCV	v more	culai spo	clics. InO	$, \mathbf{N} \mathbf{S}$ (Ce	ernicharo et al.	2014, 2018),		
ľ		H ₂ CI ⁺										
F C	мО, ми+	KUN FoCN				R Lo	floch - ICISE 201	18 - Ouv Nhon				
	חת', אי	HO				D. LE		LO QUY MIUII				
C C	~1 N	10_2										

150

100

50

0

60

40

20

0

200

100

0

0

0

0

L1544

PSC

Ν

Class 0

Ν

Shock

Ν

C

S

S

С

ASAI sample Number of *detected* molecular species : 35 – 51 Number of molecular lines : 178 - 413 (σ = 5-12 GHz⁻¹)

S

С

0

0

Ν

Orion	SgrB2
43	56
3200	3700

B. Lefloch - ICISE 2018 - Quy Nhon

С

S

Two Chemical Classes

 $r= N(O)/N(C) = 1 \text{ defines two chemical classes:} \\ O\text{-rich : hot corino sources : } r= O/C > 1.5 \\ C\text{-rich : WCCC} : r= O/C < 1.5 \\ \end{cases}$

SVS13A : hot corino L1157-mm : WCCC

B. Lefloch - ICISE 2018 - Quy Nhon

COMs in the Prestellar Phase

COMs are present at the prestellar stage

Bacmann et al. (2012), Cernicharo et al. (2012), Oberg et al. (2010)

TMC1: benzonitrile c-C₆H₅CN (*MacGuire et al. 2018*)

Vastel et al. (2014), Jimenez-Serra et al. (2015)

First systematic census of COMs in a PSC CH₃OH, CH₃CHO, CH₃OCHO, CH₃OCH₃, H₂CCO, HCOOH

CH₃CN, CH₃NC, CH₂CHCN

B. Lefloch - ICISE 2018 - Quy Nhon

Vastel et al. (2014), Jimenez-Serra et al. (2015)

Emission of CH_3OH and other COMs arise from the outer layers where strong UV-photodesorption of water ice is observed *Vastel et al. (2014), Bizzochi et al. (2014)*

Origin of COMs is a challenge

→ Non-thermal desorption of CH_3OH and C_2H_4 from grain mantles + gas phase reactions could account for the formation of some COMs *in the gas phase* : CH_3CHO , H_2CCO ?

COMs around Solar-Type Protostars

IRAS16293-2422

Ketene/Methyl Formate : Cold / Hot objects

(Jaber et al. 2014, Kahane et al. 2013, Jorgensen et al. 2012)

TIMASS (Caux et al. 2011): H₂CCO, CH₃CHO, NH₂CHO, HCOOCH₃, CH₃OCH₃, CH₃CN, HOCH₂CHO

Two contributions :

Compact, Hot, dense region : Hot corino $Td \ge 100K : X=1(-9) - 1(-8)$ Extended, Cold Envelope : X=3(-12) - 2(-10)

I16293 Hot Corino

(Bottinelli et al. 2007)

B. Lefloch - ICISE 2018 - Quy Nhon

 $H_{3^{+}} + HD \longrightarrow H_{2}D^{+} + H_{2}$ ($\Delta E = +230K$)

Enhanced molecular D/H in cold gas

Decrease of molecular deuteration in Class I -SVS13A

Bianchi et al. (2017)

Shocks as COM factories

Abundances are all similar (but NH_2CHO) : 10^{-8} [H₂] Relatively to CH_3OH : X = 2% - 5 % X[CH₃OH]

Linear correlations: chemical families: a common origin ?

Which formation route for glycolaldehyde ? Grain surface ($CH_3OH + HCO$) ? Gas phase ($H_2CO^+ + H_2CO$) ?

Woods et al. (2012, 2013)

A New Scheme: The Ethanol Tree

(Skouteris et al. 2017)

Formamide NH₂CHO: an important molecule for prebiotic chemistry

- the four most abundant elements of biological systems: C,H,O,N
- the simplest molecule with a peptide bond

A precursor of prebiotic chemistry (Saladino et al. 2012)

Detected in Comets: Hale-Bopp (Bockelee-Morvan et al. 2000), 81P/Wild2 (Elsila 2009), 67P (Altwegg 2016) → Exogenous delivery on Earth (Ferus et al. 2014) ?

Detected in high-mass SFRs (Bisschop et al. 2007)

solar-type protostar IRAS16293-2422 (Kahane et al. 2013).

Formamide NH₂CHO: an important molecule for prebiotic chemistry

- the four most abundant elements of biological systems: C,H,O,N
- the simplest molecule with a peptide bond

Lopez-Sepulcre et al. (2015)

NH₂CHO is detected only in hot corinos and shocks Not in PSC and WCCC sources

ASAI. Search for Migerio in solar-type chyliolinents								
				-				
	Source	d	M	$L_{\rm bol}$	Type			
		(pc)	(M_{\odot})	(L_{\odot})				
	TMC1	140	21	-	PSC - young			
	L1544	140	2.7	1.0	PSC - evolved			
Not detected	B1	200	1.9	1.9	Class 0 - early			
	L1527	140	0.9	1.9	Class 0, WCCC			
	L1157-mm	325	1.5	4.7	Class 0, WCCC?			
	IRAS 4A	235	5.6	9.1	Class 0, HC			
	SVS 13A	235	0.34	21	Class $0/1$			
Detected	OMC-2 FIR 4	420	30	100	IM proto-cluster			
	Cep E	730	35	100	IM protostar			
	L1157-B1	250			outflow shock			

ASAL: Soorch for NH CHO in color-type environments

NH₂CHO and HNCO are

Several formation pathways

for HNCO (also : Marcelino 2009)

chemically related

From hot corinos to hot cores

Relative O-bearing abundances vary little with respect to luminosity But : H₂CCO and CH₃CHO

Good correlation between CH_3OCH_3 and CH_3OCHO : a common origin ? (Balucani et al. 2016)

Relative C₂H₅N abundance increases with luminosity

(Ospina-Zamudio et al. 2018)

Conclusions and Future Prospects

Single-dish line surveys such as ASAI show that

- Molecular complexity is already present in the earliest phases of star formation, at a degree comparable to that of massive SFRs.
- No leap in molecular complexity from low- to high-mass Star Forming Regions.
- Molecules of prebiotic interest are discovered, complex and simple!
- Shocks are as chemically rich as protostellar envelopes; act a major factor of chemical feedback. They are true laboratories which help to characterize molecule formation pathways.

High-angular resolution observations with NOEMA and ALMA are opening a new window for the (astro)chemistry of Star Forming Regions.

Thanks

Thanks to all the ASAI collaborators for this fantastic and so successful journey :

C. Ceccarelli, J. Cernicharo, C. Codella, A. Fuente, A. Lopez-Sepulcre, C. Vastel, E. Caux, M. Tafalla, E. Bianchi, P. Caselli, A. Gomez-Ruiz, P. Hily-Blant, J. Holdship, I. Jimenez-Serra, C. Kahane, E. Mendoza, J. Ospina-Zamudio, S. Pacheco, L. Podio, E. Roueff, N. Sakai, B. Tercero, P. de Vicente, S. Viti, S. Yamamoto, K. Yoshida, T. Monfredini, H. Quitian